Chapter 10: Uhsupervised Learning
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This chapter will focus on methods intended for the setting in which we only have a set of
features Xi, ..., X, measured on n observations. A ngen hare Y
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1 The Challenge of Unsupervised Learning

Supervised learning is a well-understood area.
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In contrast, unsupervised learning is often much more challenging.
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Unsupervised learning is often performed as part of an exploratory data analysis.
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It can be hard to assess the results obtained from unsupervised learning methods.
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Techniques for unsupervised learning are of growing importance in a number of fields.
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2 Principal Components Analysis

We have already seen principal components as a method for dimension reduction.
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Principal Components Analysis (PCA) refers to the process by which principal compo-
nents are computed and the subsequent use of these components to understand the data.
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Apart from producing derived variables forr use in supervised learning, PCA also serves
as a tool for data visualization.
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4 2 Principal Components Analysis
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2.1 What are Principal Components?
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Suppose we wish to visualize n observations with measurements on a set of p features as
part of an exploratory data analysis.
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Goal: We would like to find a low-dimensional representation of the data that captures as
much of the information as possible.
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PCA provides us a tool to do just this.
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Idea: Each of the n observations lives in p dimensional space, but not all of these dimen-
sions are equally interesting.
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2.1 What are Principal Compon... 5

The first principal component of a set of features X, ..., X, is the normalized linear com-
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Given a n x p data set X, how do we compute the first principal component?
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6 2 Principal Components Analysis

There is a nice geometric interpretation for the first principal component.

After the first principal component Z; of the features has been determined, we can find the
second principal component, Z3. The second principal component is the linear combination
of X1,...,X, that has maximal variance out of all linear combinations that are uncorrelat-
ed with Zl'
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Once we have computed the principal components, we can plot them against each other to
produce low-dimensional views of the data.

str (USArrests)

## 'data.frame': 50 obs. of 4 variables:

## $ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...

## $ Assault : int 236 263 294 190 276 204 110 238 335 211 ...

## $ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...

## $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...

pca <- prcomp(USArrests, center = TRUE, scale = TRUE)

summary (pca)

## Importance of components:

## PCl PC2 PC3 PC4
## Standard deviation 1.5749 0.9949 0.59713 0.41645
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000

pcasSrotation

## PC1 PC2 PC3 PC4
## Murder -0.5358995 0.4181809 -0.3412327 0.64922780
## Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
## UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
## Rape -0.5434321 -0.1673186 0.8177779 0.08902432

biplot(pca)
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2 Principal Components Analysis
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2.2 Scaling Variables

2.2 Scaling Variables

We’ve already talked about how when PCA is performed, the varriables should be cen-
tered to have mean zero.

This is in contrast to other methods we’ve seen before.
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10 2 Principal Components Analysis

2.3 Uniqueness

Each principal component loading vector is unique, up to a sign flip.

Similarly, the score vectors are unique up to a sign flip.

2.4 Proportion of Variance Explained

We have seen using the USArrests data that e can summarize 50 observations in 4 di-
mensions using just the first two principal component score vectors and the first two prin-
cipal component vectors.

Question:

More generally, we are interested in knowing the proportion of vriance explained (PVE)
by each principal component.
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2.5 How Many Principal Components to Use

In general, a ntimesp matrix X has min(n — 1, p) distinctt principal components.

Rather, we would like to just use the first few principal components in order to visualize or
interpret the data.

We typically decide on the number of principal components required by examining a scree
plot.
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2.6 Other Uses for Principal Components

We’ve seen previously that we can perform regression using the principal component score
vectors as features for dimension reduction.

Many statistical techniques can be easily adapted to use the n x M matrix whose columns
are the first M << p principal components.

This can lead to less noisy results.



