Chapter 10: Unsupervised Learning

INCS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUAUY IMPOSSIBLE.

Credit: https://xkcd.com/1425/
This chapter will focus on methods intended for the setting in which we only have a set of features X_{1}, \ldots, X_{p} measured on n observations. No longer hare y !
We are not interested in prediction because we hare ho associated Y.

Goal: discoventy interesting things about measurements X_{1}, \ldots, X_{p}
= Istrere an information way to plot the data?

- Can he discover subgroups among variables or observations?

1 The Challenge of Unsupervised Learning
Supervised learning is a well-understood area.
You how have a good grasp of supervised learning.
If you were asked to predict a binary response -
Logistic regression. SUM, LDA, classificationtrces, RF, bagged, boosted true,
and a clear undestardiy of how to assess jour results -
validation on an independent test set
Cross - validation error.
In contrast, unsupervised learning is often much more challenging.
More subjective, no simple goal for the analysis, e.g. prediction.

Unsupervised learning is often performed as part of an exploratory data analysis.
list part of an analysis, before fitting any models.
It can be hard to assess the results obtained from unsupervised learning methods.
No universally accepted mechanism for performing cros-validation or validation on a test st.

Because there is no way to "check our wort" with no response variable.
\rightarrow We don 't know the tree answer!

Techniques for unsupervised learning are of growing importance in a number of fields.
cancer research assay gene expression levels in 100 patients and look for subgroups among cancer sample to better understand the disease.

Online shopaizy identify similar groups of shoppers show prefercetial items that they might le particularly infested.
My research Entity resolution Many noisy databases without unique ideatifyiry attributes \rightarrow 2 can we find the matches/links?

2 Principal Components Analysis

We have already seen principal components as a method for dimension reduction. When faced w/ a large sit of correlated variables, we can us poncipal components to summarize this set us a smaller number of representative variables that collectively explain most of the variability in the origind dat a set.

$$
\begin{aligned}
& \text { Principal component directions = directions in factor space along which on final data } \\
& \text { I are highly variable. } \\
& \text { derive lover and subspaces that we close as possithe to the lota dead. } \\
& \text { Prinapal component regression } \\
& \text { used principal components ar predictors in a regrescibu model intend of } \\
& \text { original variables. }
\end{aligned}
$$

Principal Components Analysis (PCA) refers to the process by which principal componets are computed and the subsequent use of these components to understand the data.

$$
\begin{aligned}
& \text { Unsupervised approach } \\
& \text { involves only features } X_{1,-,} X_{\rho} \text {, as response } Y \text {. }
\end{aligned}
$$

Apart from producing derived variables form use in supervised learning, PCA also serves as a tool for data visualization.
visualize observations or of variables.
as a fool for visualization / EDA.
2.1 What are Principal Components?

$$
x_{1}, \ldots x_{p}
$$

Suppose we wish to visualize n observations with measurements on a set of p features as part of an exploratory data analysis.
We could do this by examining $2 D$ plots of pu data which wotan observations heasered on 2 features.

$$
\begin{aligned}
& \text { gag pairs, parrs } \\
\Rightarrow & \binom{\rho}{2}=\frac{p(\rho-1)}{2} \text { plots. e.g. w/ } p=10 \Rightarrow 45 \text { plots! }
\end{aligned}
$$

- Too many to look at
- Likely no plot will be informative because they contain a small fraction of information present in our data.

For visualization
Pr or in visualization dimensions
Goal: We would like to find a low-dimensional representation of the data that captures as much of the information as possible.

Then plot observations in low -dimensional space.

PCA provides us a tool to do just this.
It finds low divensind representation of a data set that contains car much aces possible of the variation (informatim).

Idea: Each of the n observations lives in p dimensional space, but not all of these dimensons are equally interesting.
PCA seeks a small number of dimensions that are as interesting as possible. "interesting" amount the observations vary along each dimension.

Each dimbasion found by PCA is a linear combination of the ρ factors.

The first principal component of a set of features X_{1}, \ldots, X_{p} is the normalized linear combination of the features

$$
z_{1}=\phi_{11} x_{1}+\phi_{21} x_{2}+\cdots+\phi_{\rho 1} x_{\rho}
$$

normalized: $\sum_{j=1}^{p} \phi_{j 1}^{2}=1 \longleftarrow$ otherwise could result in arbitrarily large variances
$\phi_{11} \ldots, \phi_{p r}$ are called "loadings" of the first principal component.

$$
\phi_{1}=\left(\phi_{11}, \ldots, \phi_{p_{1}}\right)^{\top}=\text { "loading vector". }
$$

that has the largest variance. of Z_{1}

$$
\operatorname{Var}\left(\phi_{11} x_{1}+\cdots+\phi_{p 1} x_{p}\right)
$$

Given a $n \times p$ data set \boldsymbol{X}, how do we compute the first principal component?
(1) Assume each variable has been catered Ci.e. columns have mean O) - only car about (do it)
(2) look for linear combinations of toe form

$$
z_{i 1}=\phi_{11} x_{i 1}+\phi_{21} x_{i 2}+\ldots+\phi_{\rho 1} x_{i p}
$$

W) largest sample variance subject to $\sum_{j=1}^{\rho} \phi_{j i}^{2}=1$.
i.e. Solve the following aptinization problem: bar write thiswor countered
$\underset{\phi_{(1, \ldots)} \phi_{p_{1}}}{\operatorname{maximize}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j 1} x_{i j}\right)^{2}\right\}$

$$
\begin{aligned}
& \text { because } \\
& \Rightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i j}=0
\end{aligned}
$$

$$
\Rightarrow \frac{1}{n} \sum_{i=1}^{n} z_{i 1}=0
$$

\Rightarrow this is sampleverime of $z_{i i}, i=1, \ldots, n$.
$Z_{11, \ldots} Z_{n 1}$ are called "scones" of the first portapal component.

There is a nice geometric interpretation for the first principal component.
The loading vector \varnothing_{1} defines a direction in the feature space along which the data vary the most.

If we project n data points onto this direction we get the scores $Z_{11}, \ldots, Z_{n 1}$

After the first principal component Z_{1} of the features has been determined, we can find the second principal component, Z_{2}. The second principal component is the linear combination of X_{1}, \ldots, X_{p} that has maximal variance out of all linear combinations that are uncorrelated with Z_{1}.
\uparrow
First primapail component.
The second privipal component score are

$$
z_{i 2}=\phi_{12} x_{i}+\ldots+\phi_{\rho 2} x_{i \rho}
$$

$\varnothing_{2}=$ second principal component loading vector.
Z_{2} uncorrelated v / Z_{1}

ϕ_{2} orthogonal to ϕ_{1}

$$
\sum_{j=1}^{p} \phi_{j 2} \cdot \phi_{j 1}=0
$$

To find $\phi_{2}\left(\mathrm{Ca}_{2}\right)_{\text {, }}$, solve a similar optimization problem $\mathrm{h} /$ addition d constraint. $\operatorname{maximize}_{\phi_{21 J} \rightarrow \phi_{2 \rho}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j 2} x_{i j}\right)^{2}\right\} \quad$ subject to $\sum_{j=1}^{p} \phi_{j 2}^{\alpha}=1$ and $\sum_{j=1}^{p} \phi_{i 2} \phi_{j 1}=0$.

Once we have computed the principal components, we can plot them against each other to produce low-dimensional views of the data.

> each of the 50 states, \# arrests per 100,000 residents for each of 3 crimes. str(USArrests)
\#\# 'data.frame': 50 obs. of 4 variables:
1\#\# \$ Murder : mum 13.2108 .18 .897 .93 .35 .915 .417 .4 ...
\% pop in $2 \# \#$ \$ Assault : int $236263294190 \quad 276204110238335211 \ldots$

in urban $3 \# \#$ Rape $:$ mum $21.244 .53119 .540 .638 .711 .115 .831 .925 .8 \ldots$
ares.
pea <- prcomp(USArrests, center = TRUE, scale = TRUE) \# get loadings
summary(pca) \# summary
\#\# Importance of components:
\#\# PC PC PC PC
\#\# Standard deviation $\quad 1.57490 .99490 .597130 .41645$
$\begin{array}{cllllllll}\text { PVE \#\# Proportion of Variance } & 0.6201 & 0.2474 & 0.08914 & 0.04336 \\ \text { \# malatre } \\ \text { \#\# Cumulative Proportion } & 0.6201 & 0.8675 & 0.95664 & 1.00000\end{array}$
PYE
visualize 87% of variability retained.
pca\$rotation \# principal components loading matrix \Rightarrow mixing 13% variability

\#\# plot scores + directions
biplot (pea)

First loading places approximately equal wight on murder, agsarlt, rape. less wight on urban pops
\Rightarrow this fist corponat \approx measure of rate of scribes Gibes Second loading places most weight on Urban population. \Rightarrow Ind composer \Rightarrow level of urbanization of a state.
2.2 Scaling Variables

We've already talked about how when PCA is performed, the variables should be centered to have mean zero.

Also resits depend on whetter variables hare been indivicheally scaled. (to hare save $s d$).

This is in contrast to other methods we've seen before.
Log. linear regression when multiply by b, the corresponding watticient is charred by o factor $1 / c$.
e.g. LAsso is scale depelet ridge veg gassion.
sere data as
 before, didn't scab.

Variables measured in diffeet units crine: \#/100,000 urbanfop: percentage.
-
$0 \leftarrow$ longe loading m (large variance b/c of scale).

PC
Undesirable for PCA to depend on something ar arbitrary as scale \Rightarrow scale each variable to have $s d=1$.
UNLESS: all varidiles are weasured on save units \Rightarrow might not want to scaletien,
2.3 Uniqueness

Each principal component loading vector is unique, up to a sign flip.
\Rightarrow software should result insane princ.comp. loading rectors, but sign might flip.
signs might differ because each polk. comp. loading specifies a direction in ρ-spae.
Flipping sign has no effect since the directions.
line tret extads
Similarly, the score vectors are unique up to a sign flip. in either direction.

$$
\operatorname{Var}(z)=\operatorname{Var}(-z)
$$

2.4 Proportion of Variance Explained

We have seen using the USArrests data that ${ }^{\text {w }} \mathrm{e}$ can summarize 50 observations in 4 dimansions using just the first two principal component score vectors and the first two principal component vectors.

Question:
How much of the information in a given data set is lost by projecting observations onto first α prince. Coup?
i.e, how much of variability is not contained in the first 2 prim. comp? More generally, we are interested in knowing the proportion of variance explained ($P V E$) by each principal component.

$$
\begin{aligned}
& \text { Total Variance: } \sum_{j=1}^{\rho} \operatorname{Var}\left(x_{j}\right)=\sum_{j=1}^{\rho} \frac{1}{n} \sum_{i=1}^{n} x_{i j}^{2} \\
& \begin{array}{l}
\text { Variance explained, } \quad \frac{1}{n} \sum_{i=1}^{n} z_{i m}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{i m} x_{i j}\right)^{2} M^{\text {th }} \text { print. Comp: } \\
\text { by }
\end{array} \\
& \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j m} x_{i j}\right)^{2} \\
& \Rightarrow \text { PUE by } m^{\text {th }} \text { Pons. coup: }
\end{aligned}
$$

(positive quantity).

Cumulative PVE for Is \ln components: sum PVE first M.

2.5 How Many Principal Components to Use

$$
n \times p
$$

In general, a ntimesp matrix \boldsymbol{X} has $\min (n-1, p)$ distinct principal components.
we are probably not interested in all of then
Rather, we would like to just use the first few principal components in order to visualize or interpret the data.

Want to use the smallest \#t required to get a good understanding of the data.
How many?
No one simple answer!
We typically decide on the number of principal components required by examining a scree plot.
look for a point that has an "elbow", where plot stops droppily so sharpy.

this is ad hoc, because the question of howmayr is "enough" is not well defined.
Depends on problem, the data, and your goals.
Unsupernsed $\left\{\begin{array}{l}\text { Usually plot first two and look for "intersting patterns". If there are ache, probably } \\ \text { wont }\end{array}\right.$ EOS
kIf first 2 ore interesting, keep looking!
Supervised
$P \subset R$$\left\{\begin{array}{l}\text { there is a good way to choose \# of components: Cross validation. }\end{array}\right.$

2.6 Other Uses for Principal Components

We've seen previously that we can perform regression using the principal component score vectors as features for dimension reduction.

Many statistical techniques can be easily adapted to use the $n \times M$ matrix whose columns are the first $M \ll p$ principal components.

$$
\operatorname{e.g.} \text { (other types of) regression, classification, clustering (next). }
$$

This can lead to less noisy results.
Since usually the signal is concentrated in its first few principal componerts.

