
Chapter 7: Moving Beyond Linarity
So far we have mainly focused on linear models.

Previously, we have seen we can improve upon least squares using ride regression, the las-
so, principal components regression, and more.

Through simple and more sophisticated extensions of the linear model, we can relax the
linearity assumption while still maintiaining as much interpretability as possible.

Linear models are relatively simple to describe and implement.

* .

. interpret a inference
- : can have limited predictive performance because linearity assumption is alway an

approximation (may not be a
good one).

ge

improvement obtained by reducing complexity of linearmodels ⇒ lever variance of estimates.

still a linear model ! Can only he improved so much
.

we've seen ④ Polynomial regression : adding extra predictors that are original variables raised to a poweralready -
this .

e. g.
cubic regression use X

,
X
'

,
X
'
as predictors , e.g . Y = Po tf, Xppzxztpzx' tE

pto. non - linear fit

- : with large powers , polynomial een fake very strange shapes (especially at boundary ).

③ step functions : cut the range of predictor into K distinct regions (to producing categorical
-

variable) . fit a piecewise constant function to (binned) X.
y J in:-.
-

i

-

X

③ Regrshbnsp.li# : more flexible than polynomials t step functions (extends both)

idea: cut range of X into Kid istht regions t polynomial is fit within each region.

polynomials constrained so they smoothy joined.

⑨ Generalizedadditin.mode.ly : extend above ideas to deal w/ multiple predictors .

exp ( fotf,Xt . .
.
- tfdxd)
-Note : we can talk about regression or classification , e.g . logistic regression (polynomial) : PG -- NX) = I + exp ( ftp.xt . . . +BdXd)
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1 Step Functions
Using polynomial functions of the features as predictors imposes a global structure on the
non-linear function of .

We can instead use step-functions to avoid imposing a global structure.

For a given value of , at most one of  can be non-zero.

-

(

idea: Break range of X into bins and fit direct
constant to each bin

.

detail : ① create cut points 4 , . ., Ck in the rage ofX
② construct KH new variables.

Coca --ICX cc ,)
C
,
(x) --I( c , execs)

"÷:*:÷¥÷:* .) :÷:±÷÷÷:÷.co ::c:
③ Use least squares to fit a linear model asking c

, Cyd, Czcx), . . , Ck CH

Y = Both C , Cx) t . . . tpf, +E
t
leave out coCx) because it is

* equivalent to lhdidrhg an intercept.

Co (x) t C,4) to . - t (KH)
-

- N since X must h in exactly one interval
.

when X L c, ⇒ all of predictors C , , - - , Ck = O

⇒ Po interpreted as he mean valve of Y when X c c,

Pj represent the average increase in the response for Cj E X a cjt, relative

to X s Cr .

We can also fit a logistic regression
Meehl for classification:

ply = , µy=
exp ( foot ficilxltc .

. t Beqaa)
-

It exp ( fo tf , C , hat cut fkckcxl)
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Example: Wage data.

year age maritl race edu-
cation region job-

class health health_ins logwage wage

2006 18

1.
Never
Mar-
ried

1.
White

1. <
HS
Grad

2. Mid-
dle
At-
lantic

1.
Indus-
trial

1.
<=Good 2. No 4.318063 75.04315

2004 24

1.
Never
Mar-
ried

1.
White

4.
Col-
lege
Grad

2. Mid-
dle
At-
lantic

2.
Infor-
ma-
tion

2.
>=Very
Good

2. No 4.255273 70.47602

2003 45
2.
Mar-
ried

1.
White

3.
Some
Col-
lege

2. Mid-
dle
At-
lantic

1.
Indus-
trial

1.
<=Good 1. Yes 4.875061 130.98218

2003 43
2.
Mar-
ried

3.
Asian

4.
Col-
lege
Grad

2. Mid-
dle
At-
lantic

2.
Infor-
ma-
tion

2.
>=Very
Good

1. Yes 5.041393 154.68529

for agroup of 3000
male workers in mid - atlantic region

or

O "O

C
,
= 30

Ca = GO

±÷÷. .
.

! If I
"÷

fr
C wage

2250k).

logistic regression modeling
missing dear probability of being high rage earner siren age .upward trend.

stepwise error model . W knots at X -- 30,60.

unless there are natural breakpoints in the predictor ,

piecewise constant can miss trends.
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2 Basis Functions
Polynomial and piecewise-constant regression models are in face special cases of a basis
function approach.

Idea:  

Instead of tting the linear model in , we t the model

Note that the basis functions are xed and known.

We can think of this model as a standard linear model with predictors de ned by the basis
functions and use least squares to estimate the unknown regression coef cients.

t

have a family of functions or transformations that can he applied to a variable X

b
,
Cx)
, bzlx) , . . . , back)

Yi -- fo tf , b ,Hilt .
- - tpkbkcxilt Ei

we choose them ahead of time.

eye: polynomial regression bj (Xi) = Kid , 5=1, . . . d.

ez : step function b
;Gci)

= I ( c; Exit Citi )
( piecewise constant) = { to ciexi ' ein

O . W .

⇒ we can use all our inference tools for linear models .

e.g . Se ( Bj ) and f - statistic for model significance.

Many alternatives exist for basis functions
.

eg .
Wavelets

,
fourier Series

, regression splines (next) .
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3 Regression Splines
Regression splines are a very common choice for basis function because they are quite ex-
ible, but still interpretable. Regression splines extend upon polynomial regression and
piecewise constant approaches seen previously.

3.1 Piecewise Polynomials

Instead of tting a high degree polynomial over the entire range of , piecewise polynomi-
al regression involves tting separate low-degree polynomials over different regions of .

For example, a pieacewise cubic with no knots is just a standard cubic polynomial.

A pieacewise cubic with a single knot at point  takes the form

Using more knots leads to a more exible piecewise polynomial.

In general, we place  knots throughout the range of  and t  polynomial regres-
sion models.

-

- -

start
-

e.g. one knot at C A

fit two polynomials to the data

one on s-but for x cc

one on subht for xzc

each polynomial can he f-t.my least squares.
%

q

q, = { ④"it it i' tei if xicc

④⑧it Ki't cite; if 2C ? C

if we place K knots ⇒ fit KH polynomials

This leads to ( DH) (KH) degrees of freedom in model

( # of parameters to fit a complexity/ flexibility) .
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3.2 Constraints and Splines

To avoid having too much exibility, we can constrain the piecewise polynomial so that the
tted curve must be continuous.

To go further, we could add two more constraints

In other words, we are requiring the piecewise polynomials to be smooth.

Each constraint that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, bu reducing the complexity of the resulting t.

The t with continuity and 2 smoothness contraints is called a spline.

A degree-  spline is  

-

i.e
.

here cannot he a jump at knots.

① 1st derivative of piecewise polynomial must he continuous

⑧ 2nd derivative of piecewise polynomial must he cts
.

-

y

cubic
N cubic

a piecewise degree - d polynomial w/ continuity in derivatives up to

degree d- I at each knot.

jurpnt.go
0 gmotsmodthc. so

piecewise
cubic piecewise

aah" cubic spline
polynomial w/poly raid ets t smooth
continuity
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3.3 Spline Basis Representation

Fitting the spline regression model is more complex than the piecewise polynomial regres-
sion. We need to t a degree  piecewise polynomial and also constrain it and it’s  de-
rivatives to be continuous at the knots.

The most direct way to represent a cubic spline is to start with the basis for a cubic poly-
nomial and add one truncated power basis function per knot.

Unfortunately, splines can have high variance at the outer range of the predictors. One so-
lution is to add boundary contraints.

upto

we can use the basis model to represent a regression spline.

ego

cspwqqf.ly, Yi
= Po tf , b.Hilt Pzbdxilt . - . Piet, but,

Gci ) t Ei
BB -
-
d-demand

for appropriate basis functions b
, .bz , . . , but, go , go?

203 4h" -

→
basis

for

d degree
-
- polynomial

- T
Od

hlx, 9) = Ex - q¥d= { "
" 97
'

it a > 9 where 9 is a knot.
O o . W .

⇒ Yi = fo tf , x; t fecit fzxi t .

Pst; h la , 9; )

this will lead to -discontinuity in only the 3rd derivative at each q;

with continuous first and sand derivatives and continuity at each 9J

off = Kt 4 ( cubic spline w/ K knots)
-

when X is very small or very large.

⇒ " natural spline "

function required to be linear at the boundary ( where × is smaller than

degree d the smallest knot and
I
q linear . Hit" .

linter

bigger than biggest knot)
I

n

l

-
a

• ÷
.→

ar r x
9

,
92

additional constraint produces more stable estimates at the boundaries .
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3.4 Choosing the Knots

When we t a spline, where should we place the knots?

How many knots should we use?

3.5 Comparison to Polynomial Regression

• regression spline is most flexible in regions that contain a lot of
knots ( beefing,?g rapidly).

⇒ place knots where he think the function with vary rapidly and less knots where function is stable .

More common in practice ! place them uniformly .
et

To place knots : choose desired degrees of freedom ( flexibility) t use software to
a-

automatically place # Knots at uniform qvantilesofdata

Too

⇐ how many elf should we use ?

Use CV ! Use k giving smallest CV MSE ( CV error) .

Regression splines often gie superior results to polynomial regression.
↳ Polynomial regression must use high degrees to achieve flexibility ( e.g . Xt5) , but regression splines
introduce flexibility through knots ( fixed degree polynomials) ⇒ more stability (esp . at

boundaries)

#
polynomial
with

degree
15

aware
I
bio

spline w/ df = IS

extra flexibility of

polynomial at boundary
produces

undesirable

results , but
Nc spline

w/ some fusibility
still looks reasonable -
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4 Generalized Additive Models
So far we have talked about exible ways to predict  based on a single predictor .

Generalized Additive Models (GAMs) provide a general framework for extending a stan-
dard linear regression model by allowing non-linear functions of each of the variables
while maintaining additivity.

4.1 GAMs for Regression

A natural way to extend the multiple linear regression model to allow for non-linear rela-
tionships between feature and response:

These approaches can be seen as extensions of simple linear regression model
.

Y -- pot f.④ to
d

extension : ban 's functions of X

flexibly predict Y on several predictors Xia -- , Xp.

still additive models

can be und for regression or classification .

linear regression : Yi = pot pix, it pzkzi t .
. -
t Pp Kpi t Ei

extension idea ! replace each linear component pjxij with a smooth non -hear function
.

non -liner

⇒ GAM : Yi = pot ÷
,

t
; Gci; ) t Ei

= fo t f, Gci ,) t fzfxiz) t- -
at Fp trip) te,

" additive" because we calculate a separate fj for each predictor Xj and
add them

together.

positivities for foe .

.

- linear component ( leads
t linear regression) .

- polynomial function
- regression spline
- smoothing spline } not covered , but see textbook Ch . 7.5 - 7.6 for details

.

- local linear regression .
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The beauty of GAMs is that we can use our tting ideas in this chapter as building blocks
for tting an additive model.

Example: Consider the Wage data. uarttatihe
y
categorical .

Wage = po tf, (year) t fzlage) t f, (education) te
cubic

where f
,
is natural

"

spline w/ 9 If

f-z is natural cubic spline w/ Sdf

f-g constant functions for each valve ( dummy
variables)

§ XEb- off
B

T EE e

fitted functions / fan
of

pointwise
se

.

relationship between each variable and responses.

• year
e

. holding age and education fixed
, wage tends to increase with gear.

( inflation?) .

-

age : holding year
and education fixed

,
wage is low for young and old people,

highest for intermediate ages .

- education : holding year t age fixed, wage tends to increase Lith education .

we could easily replace tj with different smooth functions and get different fits.

just need to change basis t use least squares .
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Pros and Cons of GAMs

Advantages
- allow nonlinear fits fi for each X ; to automatically Wadel non -

linear relationship that linear regression will miss.

- non- liver fit can lead to more accurate prediction of response
( if there is a truly non liner relationship)

- additive model ⇒ we can still examine effect of each Xj on responseY

individually holding all one- s fixed .

⇒ GAM s provide a useful representation for
inference(interpretations.

- smoothness of f;
can be summarized by df.

Limitations
- mode is restricted to be additive

i.e . we can miss important interactions

solution : as with
linear regression ,

we can manually add interactions

by including additional predictors of her form Xj . Xx

or add low - dim interaction terms of tr form fjk (x; , XD .

Io - diversion splits
(not covered) .

for fully general Medill , he
have to look for even more flexible

approaches like
random forests or boosting ( next week!)

G Ams provide a useful compromise between dinar and nenparaneticT

approaches .
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4.2 GAMs for Classi cation

GAMs can also be used in situations where  is categorical. Recall the logistic regression
model:

A natural way to extend this model is for non-linear relationships to be used.

Example: Consider the Wage data.

µ
assume

Y takes

valves
O or
I

cgwmeiutI.su,

t.gl?fIp# = pot Bix , t- - et pp xp

• pcx)
"

log
!

-t '
'

or log odds of p( Y -- I Ix) us
.
PCY -- O IX) .

as linear function of predictors .

log (FIFTH) = pot fix .) t . .
- t fplxp) .

logistic regression GAM

ht Y = wage 7 Is 250k

we could fit a q Am: ynatuqfnYYIe-sypiemYYI.is Each level .
log (Ef⇒= pot f , fyear) t fat age) t f, Ceducation)

ntatuml cubic splined af .- y increase
~ )

I education
f-

a

w l
mi::
":i: ÷÷÷÷Y÷÷. :*::-.:::"linear function more of an effort on

(polynomial 4 degree 1) pfhighearnerlx) then may
want to refit this meal

excluding that class.
without much 4 hhs & year.

A variance .


