
Chapter 8: Tree-Based Methods
We will introduce tree-based methods for regression and classi�cation.

The set of splitting rules can be summarized in a tree “decision trees”.

Combining a large number of trees can often result in dramatic improvements in prediction
accuracy at the expense of interpretation.

Credit: http://phdcomics.com/comics.php?f=852

Decision trees can be applied to both regression and classi�cation problems. We will start
with regression.

→ nonparametric
supervised .

→ quantifying →
categories,onset .

These involve segmenting the¥%e into a number of simple regions

↳ all values X., . ., Xp can take.

To make a prediction for an observation , we use the mean or mode of training observations
a-
-

in the region to which it belongs. t ↳
classification

.

regression

-

- simple and useful for interpretation .
- not competitive w/ other supervised approaches leg . lasso) for prediction .

p
boosting

'

bag974on forests
(later)

TT

2

1 Regression Trees
Example: We want to predict baseball salaries using the Hittters data set based on
Years (the number of years that a player has been in the major leagues) and Hits (the
number of hits he made the previous year).

The predicted salary for players is given by the mean response value for the players in that
box. Overall, the tree segments the players into 3 regions of predictor space.

startwith
•

•
p
--

"

root
"

of the

Years < 4. 5 tree. µ

"brandlessi:÷.:c:: :÷:#n'
'imitates

f# in:*.
to acute regions and predict salary as ✓

" bra

the rear in each region .

a. sign Hitsf•f§tf f s a

issam issuer's
" '

f
R2 R,

Rp i

m ,
I

µ--µ ...

4.s

Terminology Rs
, Rz ,

R
,
=

" terminal nodes
"

or
" leaves

"

of te thee
.

points along tree where predictor space is split =
" internal nodes "

segments of tree that connect nodes
= " branches"

interpretation years
is most important fetor ch determining salary .

↳ given that a player
has less experience (e y.S gears) , # hits ' plays very little role

in his salary

↳ among player
who had been in the Kage St years, # hits does

affectsalary : 9 hits , Tsalary .

probably an oversimplification but it is easy to interpret t has nice graphical representation .

3

We now discuss the process of building a regression tree. There are to steps:

1.

2.

How do we construct the regions ?

The goal is to �nd boxes that minimize the RSS.

The approach is top-down because

The approach is greedy because

→
quantitativeresponse

Y

yo
-

i sit of possible
valves for Xi, - , Xp

Dividepredictorspace
into J distinct and non

-overlapping regions Rn - - , Rs

Predict

for every absentin
that falls into the region Rj we make the same prediction

= mean of response Y for every training observation in Rj .

.-

How to divide the predictor space?

regions could have any shape , suit that's too had to do
t to interpret) .

⇒ divide predictor space into high dimensional rectangles (
"boxes ").

Unfortunately it is computationally infeasible to consider
ere, y

= II fer!Yi - Fr;)
'

where

if Rj " mean response of training

possible partition .
data in Rj

"

box .

⇒ take top-down , greedy approach called recursive binary splitting-

we start at top of the tree (where all observations belong to a single region) and successively
split the predictor space .

each split is indicated via two new branches down the tree .

at each step in the building process , the best split is made at that particular step.

↳ not looking ahead to make asplit that
will lead to a bitter tree later.

4 1 Regression Trees

In order to perform recursive binary splitting,

The process described above may produce good predictions on the training set, but is likely
to over�t the data.

A smaller tree, with less splits might lead to lower variance and better interpretation at
the cost of a little bias.

A strategy is to grow a very large tree and then prune it back to obtain a subtree.

-

① Select the predictor and cutpoint s sit
. splitting tie predictor space into regions

{ X l X; s s) and {X IX; Z S3 leads to greatest possible reduction
'
'

n RSS.

F
region of predictor
space where Xj takes

values L s .

↳ consider all possible Xi , - - , Xp and cutpoints s (based on thinly data)
,
then choose predictor t outpoint

that result in lowest Rss .

i. e . consider all possible half planes R
,
(ios) = {Xl x; and Rz (j, s) = {XlXj Es)

we seek j is that minimize

Erie. i -5mi t.E.iepijiiir.ie/Ad7nispnEY.:;9
done

② Repeat process , looking for nextbest j is combo but instead of splitting entire space, split R, Cj, s) or R,Cj, s) to
minimize RSS.

③ Continue with stopping criteria ismet , i - e . no region contains mere than §obs.

⑨ predict using wear of training observations in the region to which test observation falls .

because the resulting the may be too complex.
→ less regions R, > - →RT

f-

idea : only split the tree if it resulted in
"

large enough
"

drop in Rss.

9
bad idea because a seemingly

' 'worthless
"

split early m the tree might he followed

by a good split later (large drop in Rss) .

pottery
How to prune the tree? →

could use CV to estimate the

goat : select a subtree that leads to lowest test error rate . error for every possible
subtree

sq : " cost complexity priumhy
"
aka "weakest link pruning

"
. This is expensive !

Consider a sequence of trees indexed by a nonnegative funny paanfffogey
#of potential subtrees) .

For each valve of d ,
F a corresponding

"btw TC To set.
penalizing complexity Mtn the

of #g ATd

tem'm . E qq.pmtyi.immy +
d l TR is as ,wet as possible .

nodes in for

theT MY
pm = win terminal node region when

a"

T = ToTyron = predicted resperk in Rm
^
29 ⇒ pay

for

a controls tradeoff between subtree complexity t fit to training data / many many
terminal

nodes ⇒ smaller

sus free .

Select a via CV , then use full dataset t chosen a to opt subtree T.

5

Algorithm for building a regression tree:
① use recursive binary splitting to grow a large tree on training data, stepping only

when each terminal node has fair than some min . # of observations.

② Use cost aewpkxity pruning to get a sequence of best trees as a function of 2 .

③ use K - fold CV to choose a

Divide training data into K folds
, for each k -- I

, . - ,
K

(a) Repeat ① and② on all data but Kth told
.

(b) evaluate the predicted MSE on KT fold as a function ft.

Amager results for each value of a ad picks that minimizes CV error
.

⑨ Return te Subbu from ② that corresponds to chosen a from ③
.

-

jutsu of

Example : fit regression tree to Hitters using 9 features . predicting salary .

⑨ is the large tree

② Cverror to estimate test Mst as a function of d

③ subtree seated .

d.of
④ mortimer:taste E ② ③
① O

§ dinner,:b.

3
L

s

g

n C

•

✓
size of the

apply cost - couple Y
(one - to - one

pruining matronship ul d)

6

2 Classi�cation Trees
A classi�cation tree is very similar to a regression tree, except that it is used to predict a
categorical response.

For a classi�cation tree, we predict that each observation belongs to the most commonly
occurring class of training observation in the region to which it belongs.

The task of growing a classi�cation tree is quite similar to the task of growing a regres-
sion tree.

It turns out that classi�cation error is not sensitive enough.

When building a classi�cation tree, either the Gini index or the entropy are typically used
to evaluate the quality of a particular split.

Recall for regression tree
,
te predicted response for an observation is given by he

meairesponse of ith training observations that belong to the same terminal node
.

-

r-
✓

the we are also often interested in the class prediction proportions that fall into each
terminal node.

mode
- of how reliable the prediction is :↳ this can give us gon

idea

nanny data in 55% Class 1
" node

e.g .
terminal made temne mode us. gs% class a purity

"

is Coo % Clash

both terminal node,
vill predict as ' 'Class2

"

Use recursive binary splitting to grew a classification tree .

But Rss cannot he used as criterion for splitting .

Instead
,
natural alternative is classification error rate.
= fraction of trashing observations that

do not Belong to the most common class.

= A - mix lipoma)
~proportion of training observations in the nth region from

km class
.

to use for growing the tree .
^

preferred measures :
as splitting criteria

⑨ Gini index G = Fink (l - Ime) measure of total variance across K classes .YF¥%¥N{ ↳ will take smderahe, it au fue 's are close to zero or one ⇒ gone mane of mode puns , da⇒ mdpffn.Y.itgh.ws .
panda,wifi

at"
from 1 class

.

rate
'

error ② Entropy D= - II
,

Fink 108 Pmk
note : neither mini

↳ will take smile valve, if pink close to 0 or I ⇒ LD when mede ' are more PM -

nor entropy work
well up unbalanced

Gini and entropy are actually quite similar. classes in data.

me . nausea.si#u.......iiiiii:i.Ei:iiiianiii::ii1.me.?.:... ¥÷÷÷[-

But if prediction accuracy of final pruned tree is the goal,
classification error rate should he used

.

7

3 Trees vs. Linear Models
Regression and classi�cation trees have a very different feel from the more classical ap-
proaches for regression and classi�cation.

Which method is better?

3.1 Advantages and Disadvantages of Trees

eg . linear regression
: HK) = pot! X; Pj

regression tree
. i fly =§

,

cm I (* c- Rm) .

' armed

where R
. Rm are partitions of the feature space .

*
'

µffMµ^"
IM

fair
- '

town::.mg?iImF.::9eaanTonem:kpoini.app...imaega
!mabhmhkMx

.

- if highly nonlinear and complex relationships , decision trees may be butter.

Also , trees may be preferred because of interpretation and visualization .

Advantages Disadvantages-
-

-

easy to explain , even easier than - do not have sane herd of predictive
firer regression . performance as other methods hedge seen .

- some people think decision trees

more closely mirror human decision
•

Not robust : small ahage , in data can

making .

have large charges in estimated tree

-

can he displayed graphically , easy
(high variability)

to interpret for non expertC÷if smell .

- can handle categorical predictors wth
can aggregate nay

trees
without creating dummy rattles.

to try and improve this ! (Next .

8

4 Bagging
Decision trees suffer from high variance.

Bootstrap aggregation or bagging is a general-purpose procedure for reducing the vari-
ance of a statistical learning method, particularly useful for trees.

So a natural way to reduce the variance is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions.

Of course, this is not practical because we generally do not have access to multiple training
sets.

i.e
.

if we split data in half (randomly) and fit decision trees to
Cah half

,
results

could be quite difference

vs
.
low variance will yield similar results if applied repeatedly to distinct datasets.

↳ linear regression is low variance n >2 p
.

a-
O-
-

-
← high variance , low bias .

Recall : for a giver st of a independent observations Z, , . . , Zn each w/ variance 4

var (En) -- Var ft Zi) ftp.E.varzi-nt.n.o-I
i. e

. averaging a set of observations reduces variance-

Tie
. take B training sets

cetcwlate I 'Gol
,
I"Ga , . . .

,
I 'B)Go)

obtain a
low variance statistical learning model

t.uakt-IE.it
'

cool
.

Collecting training data can he expensive.
Instead we could take repeated samples tyg) from the training data set
(these are called

"

bootstrapped training data sets
" because we are bootstrapping samples from the

population why only one training data at, i.e .
"

pulling ourselves up from our bootstraps
")

↳ assuming empirical distribution in sample is similar to population dsn, i.e. we have a representative
sample.

Then we could turn our method
on

b th bootstrapped training data sit to sit ItbCa) and avg :

Img Got IT ?? bug.

This is called bagging , short for bootstrap aggregation .

4.1 Out-of-Bag Error 9

While bagging can improve predictions for many regression methods, it’s particularly use-
ful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classi�cation problem?

4.1 Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model, without
the need to perform cross-validation.

To apply bagging to regression trees ,
① construct B regression

trees using B bootstrapped
data sets

② average resulting predictors

-

⇒ each tree have low bias t A variance.

averaging trees reduces variance by honking
hundreds or thousands of fees !
-

↳ won't lead to ourfilthy , but can be slow.

For agiven test observation
, record class prediction from each tree and take

majority vote : overall prediction is fu class that occurs
most often

.

-

-

← has to do w/ probability of being
selected in a

bootstep
keys : trees are fit to bootstrapped subsets of observations .

sample
as Br re.

⇒ onavangei each tree uses Fu 43 of the data to fit te tree

i.e
.

Nr GL of observations or not used to frt the
tree fout-of bag 0013 obsessions

.

idea .. predict the response for ith observation using
all the trees in which that absentia

was 00 B .

This will lead to K Bts predictions for it
observation .

Ten army (or majority
rote) these predictions to get single

0013 prediction for in
observation .

We can then get OOD prediction for each trashing absentia to get 0013 MSE

(0013 classification error)
,
which is an estimate of Hgt

error !

because we only use predictions from trees

pot didn't use these data points
in the fitting .

10 4 Bagging

4.2 Interpretation
Bagging typically result in improved accuracy

in predictions or a single tree .

But it can be difficult tointerpret the resulting model
!

↳ wee of the biggest adavantages of
trees 4 .

↳ no longer represent model using
a single tree .

⇒ no longer deer which variables are the mostimportant to

predict the response !
F-

Bagging r-prong prediction at the
cost of interpretability .

what can we do ?

We can obtain an overall summary of the importance of each predictor using
Rss (or Gini index)

- record total amount Rss (or Gini) is decreased due to splits for
a given predictor, averaged over B trees .

- large rahn indicates an important predictors.

11

5 Random Forests
Random forests provide an improvement over bagged trees by a small tweak that decorre-
lates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training
samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the chouce of predictor subset
size .

-

a-

-22

But when building thus
,
a random sample of m predictors is chosen a split

candidates from te fall set of predictors .
↳ each split is allowed only fo un those chosen predictors
↳ fresh sample if predictor, taken at each split .

↳ typically m Trip

why ?
suppose tea is one strong predictor in te data stand a number of moderately strong predictors.
In the collection of trees, most or all will un thesys as the top split.
⇒ all of of the bagged trees will look quite similar.
⇒ predictions

will he highly correlated.

gagging) and averaging highly
correlated values does not lead to much variance reduction !

Madam forests overcome this by forcing each split to consider a subset of predictors .

⇒ on average lp-pm)_ of tie splits will not even consider the strong predictor⇒ other

predictors
will

I have higher
chargeofbig

tf m=p ⇒ random forest = bagging .

split on .

Using small m will typically help when he here a lot of correlated predictors.

- As with baggio , we
will not have one filthy ul large B

- And we can examine variable importance in the same way .

12

6 Boosting
Boosting is another approach for improving the prediction results from a decision tree.

While bagging involves creating multiple copies of the original training data set using the
bootstrap and �tting a separate decision tree on each copy,

Boosting does not involve boostrap sampling, instead each tree is �t on a modi�ed version
of the original data set.

* very popular
right

now

& Ada
boost and

.

13

Boosting has three tuning parameters:

1.

2.

3.

