
Chapter 9: Support Vector Machines
The support vector machine is an approach for classi�cation that was developed in the
computer science community in the 1990s and has grown in popularity.

The support vector machine is a generalization of a simple and intuitive classi�er called the
maximal margin classi�er.

Support vector machines are intended for binary classi�cation, but there are extensions for
more than two classes.

Credit: https://dilbert.com/strip/2013-02-02
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1 Maximal Margin Classi�er
In -dimensional space, a hyperplane is a �at af�ne subspace of dimension .

The mathematical de�nition of a hyperplane is quite simple,

This can be easily extended to the -dimensional setting.

We can think of a hyperplane as dividing -dimensional space into two halves.

→
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hyperplane
separator.

p
extension of Euclidean space.
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In 2 dim

.

,
a hyperplane is a flat I dim . subspace - a line .

In 3 dim .

,

a hyperplane is a flat 2 dim . subspace - a plane
:

:

In pa 3 dim . , a hyperplane is harder to conceptualize. is still a flat p - p din . subspace.

In 2 dim . a hyper plane is defined by footBX, tax, = o
parameters

ie
. any X = (x, , xp for which this equation holds lies on the hyperplane .

Bo tf , X, = - Pzxz
Note : this is just be equation for a tire.
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Po tf, yet . . . Tpp Xp = O defies a p - dim , hyperplane.
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,Xp) for which this equation holds
will lie on the hyperplane .

'f pot fix , t . - t fpXp So then X -

- CX
. .
. .

, xp) fins
on one side of the hyperplane,

If pot pix , to .

- t pp Xp so fer X lies on me her side of the hyperplane.

we can determine which
side of the hyper plane by just determining the sign

of pot fix , t . -appXp .
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1.1 Classi�caton Using a Separating Hyperplane

Suppose that we have a  data matrix  that consists of  training observations in -
dimensional space.

and that these observations fall into two classes.

We also have a test observation.

Our Goal:

training observations

x. = i:) . . . .

.
son .

Yi , -syn E E - A , M
r

where -I represents one class

and I represents the other
.

p
- vector of observed features

x*= Gci
, - - ,x*pT

Develop a classifier based on training data that will correctly classify
the test observation ban on feature measurements

.

We have already used many approaches :
- classification trees

- random forest
, bagging , boosting .

• logistic regression
- LDA

we will see a new approach using a separating hyperplane .
-
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Suppose it is possible to construct a hyperplane that separates tthe training observations
perfectly according to their class labels.

Then a separating hyperplane has the property that

If a separating hyperplane exists, we can use it to construct a very natural classi�er:

That is, we classify the test observation  based on the sign of 
.

We can also use the magnitude of .

q

.

-

'

separating
hyperplane .÷

"

÷÷:
. .

pot fidei , t . . - t fgikip > 0 if Zi
= A and

for it , . . ,
n .

Po tf , Kiit - - - t fpxip so if y : I
-t

⇒

Yi ( pot ppciitntfpxip) > o t i-4. . . . h .

As

A test observation is assigned a class depending on
which side of the hyperplane

it is located .

if fGE) so assign x* to class 1

if FGM) co assign xx to class -E
.

If ff**) is far from zero
,
this means *

* lies far from the hyperplane
⇒ we can be confident about our class assignmentfor x*.

If H&M is close to zero
,
this wears It lies close to the hyperplane .

⇒ we are less confident about the
class assignment for x*

Note a classifier based on a separating hyperplane leads to a fig decision boundary.
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1.2 Maximal Margin Classi�er

If our data cab ve perfectly separated using a hyperplane, then there will exist an in�nite
number of such hyperplanes.

A natural choice for which hyperplane to use is the maximal margin hyperplane (aka the
optimal separating hyperplane), which is the hyperplane that is farthest from the training
observations.

We can then classify a test observation based on which side of the maximal margin hyper-
plane it lies – this is the maximal margin classi�er.
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x . h b
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+ which we shouldf "

÷÷÷:÷ii
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:÷÷÷÷::÷:÷÷÷: :*. ⇒

÷. .
.....

,

, any absent im .se
.

-we compute the perpendicular distance from each observation to a gem sparkly hyperplane.
•
the smallest distance is known as the

"
margin

"

- the maximal margin hyperplane is the one w/ the largest margin , i.e. farthest from all trainingpoints

Xz A
+ T t y

Mz > Mp
+ +

*q am larger margin ⇒ preferred hyperplane .
+ Y '

,itt n
.

T
'

. .

A

.

Hopefully a large margin on trashing data will lead to a large margin on the testdata
.

⇒ classify the test data correctly .

WARNING : when p is large can lead to overfilling .
-

x, a
these 2 points are equidistant

from the
maximal margin hyperplane .

+ + + t These are known as
"

support vectors
"

because they are p - dim
+ t

*
-

7%7: ::: nine:: maximum. ..mn. ...
•

.
.

. more as well
.

µ

0

↳ →X.

p
a
small # of points

.

Note : the maximal margin hyperplane only depends on the support vectors .

the restof he points can men and it doesnt matter.
-
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We now need to consider the task of constructing the maximal margin hyperplane based
on a set of  training observations and associated class labels.

The maximal margin hyperplane is the solution to the optimization problem

This problem can be solved ef�ciently, but the details are outside the scope of this course.

What happens when no separating hyperplane exists?

24
,
. . .

, In C- IRP Yin --syn C- {-413 .

① Maximize M← margin

Bo , fi , - -Bp , M

subject to
p

② Epi =p
jII

③ Y ; (pot ppcirt . . it ppxip )? M t it
. . . .,
h

③ mean, each observation will be on the correct side of the hyperplane (M ZO) with some cushion (M >D.

② ensures Yi (potpie, t . . . tfpxip) is perp . distance to hyperplane and ③ means each point
is atleast M distance away from the hyperplane ⇒ M is margin .

④ choose fo , fi , . . , pp , M to maximize margin .

⇒ maximal margin hyperplane !

We'll talk a little more about this later.

⇒ no maximal margin hyperplane ! ×, a
mined . we can 't draw

a

+ T t y hyperplane to separate

fi
"""

t t * these perfectly .+ T t '

y

•

,

o
'

↳ →x.

we can develop a hyperplane that almost separates the classes

- a
" soft margin

"
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2 Support Vector Classi�ers
It’s not always possible to separate training observations by a hyperplane. In fact, even if
we can use a hyperplane to perfectly separate our training observations, it may not be
desirable.

We might be willing to consider a classi�er based on a hyperplane that does not perfectly
separate the two classes in the interest of

The support vector classi�er does this by �nding the largest possible margin between
classes, but allowing some points to be on the “wrong” side of the margin, or even on the
“wrong” side of the hyperplane.

Xy A
- A classifier based on a separating hyperplane x x +
will necessarily perfectly classify all training observations

. + + y
- this can lead to sensitivity to individual observations. + t a- Yannick's

shirts oeeatapau. . .sn ." i. . ...*af &
g

in the hyperplane .

.

o
'

f resulting hyperplane has
very small margin . L →×,

greater robustness to individual observations

better classification of truest of the training observations
.

i. e . Bould be worth Wile to misclassify a few observations to do a betterjob
classifying the rest.

T
sometimes

called

" soft margin
classifier

"

TX
, A
+ T t

→ when fer is no separating hyperplane this is einen
'

table . x x÷÷÷:÷÷i÷÷÷÷÷
:

A
,
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The support vector classi�er xlassi�es a test observation depending on which side of the
hyperplane it lies. The hyperplane is chosen to correctly separate most of the training
observations.

Once we have solved this optimization problem, we classify  as before by determining
which side of the hyperplane it lies.

&

-

solution to the following optimization problem :

maximize M ← margin width .

Po , Pi , - -spp , E, s - -, En , M

subject to
P

Ep; -- I
j
-

- I

ng ; ( ftp.xiitntppxpi ) Z M ( t - Ei)

Ei 70, ⇐ Ei ECE
" cost

"

nonnegative tuning parametera

l#
" slack variables

"

allow observations to be on

the wrong side of the Margin or the hyperplane .

test observation

classify x* based on sigh of flat) ?Pot pix't t . . -t ppxtp .

- tell us whereofobservation lies relative to te hyperplane and margin .

If 9. = O ⇒ obs
.
on correct side of margin .

O < Ei Et ⇒ Obs on wrong side of margin f
"violated margin

")

Eis t ⇒ obs on wrong side of hyperplane .

M
- tuning parameter, bounds sum of Ei 's ⇒ determine, # and severity of

violations we will allow.

controls Think of C as a
budjet for the violations.

bias -variance If C =O⇒ no Sudjet for violations ⇒
E
,
= -

- - = En -- O⇒ SV classifier a maximal margin classifier Cifexists) .

trade
-off if C > o no more than C observations can be on wrong side of te hyperplane

Bchoose C because wrong side of hyperplane ⇒ Ei 21 and II. Ei so
by Cdg . small C ⇒ narrow margins.

large C ⇒ wide margins allow for more violations.



9

The optimization problem has a very interesting property.

Observations that lie directly on the margin or on the wrong side of the margin are called
support vectors.

The fact that only support vectors affect the classi�er is in line with our assertion that 
controls the bias-variance tradeoff.

Because the support vector classi�er’s decision rule is based only on a potentially small
subset of the training observations means that it is robust to the behavior of observations
far away from the hyperplane.

only observations on the margin or violate the margin or hyperplane affect the hyperplane
⇒ classifier!

i.e
.
observations that lie strictly on the correct side of the margin do not affect

the support vector classifier !

gr
hyperplane

2-

These observations do affect the classier
.

When C large ⇒ margin is wide
, many observations violating margin

or

hyper plane .
⇒

many support vectors , i.e . many observations to determine hyperplane.

⇒ low variance but potentially high bias.

When C small ⇒ few er support vectors

⇒ high variance but potentially low bias.

@

different from behavior of other classifiers :

e.gg LDA depends on med of all observations
in a class t within class covariance .
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3 Support Vector Machines
The support vector classi�er is a natural approach for classi�cation in the two-class
setting…

We’ve seen ways to handle non-linear classi�cation boundaries before.

In the case of the support vector classi�er, we could address the problem of possible non-
linear boundaries between classes by enlarging the feature space.

Then our optimization problem would become

If the decision boundary is linear !
How 4

draw a lie

sometimes we have nonlinear decision boundaries ! / separating
?

✓ won't work

#
"

KNN
, QDA . Rf ,

boosted trees.

logistic regression w/ polynomial features .

leg . quadratic or cubic terms

instead of filthy SV classifier on Xi , - , Xp
could use Xi

, Xi , .
. .

.

, Xp , Xp
'
.
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The support vector machine allows us to enlarge the feature space used by the support
classi�er in a way that leads to ef�cient computation.

It turns out that the solution to the support vector classi�cation optimization problem in-
volves only inner products of the observations (instead of the observations themselves).

It can be shown that

Now suppose every time the inner product shows up in the SVM representation above, we
replaced it with a generalization.
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4 SVMs with More than Two Classes
So far we have been limited to the case of binary classi�cation. How can we exted SVMs
to the more general case with some arbitrary number of classes?

Suppose we would like to perform classi�cation using SVMs and there are  classes.

One-Versus-One

One-Versus-All


