Lab 5: Regularization and Dimension Reduction

We will use the Hitters data set in the ISLR package to predict Salary for baseball players.

```
library(ISLR)
library(tidyverse)
library(knitr)
str(Hitters)
```

\#\#	'data.frame	322 obs. of 20 variables:
\#\#	\$ AtBat	int 293315479496321594185298323401
\#\#	\$ Hits	int 66811301418716937738192
\#\#	\$ HmRun	: int 178182010410617
\#\#	\$ Runs	: int 30246665397423242649
\#\#	\$ RBI	int 2938727842518843266
\#\#	\$ Walks	: int 143976373035217865
\#\#	\$ Years	: int 11431121123213
\#\#	\$ CAtBat	int 29334491624562839644082145093415206
\#\#	\$ CHits	int 668354571575101113342108861332
\#\#	\$ CHmRun	int 1696322512191006253
\#\#	\$ CRuns	int 3032122482848501304132784
\#\#	\$ CRBI	int 294142668384633693734890
\#\#	\$ CWalks	int 143752633543319424128866
\#\#	\$ League	: Factor w/ 2 levels "A", "N": 121221212
\#\#	\$ Division	Factor w/ 2 levels "E","W": 1221112120
\#\#	\$ PutOuts	: int 446632880200805282761211430
\#\#	\$ Assists	int 3343821140421127283290
\#\#	\$ Errors	int $201014 \begin{array}{lllllll} \\ \text { in }\end{array}$
\#\#	\$ Salary	: num NA 47548050091.575070100751100
\#\#	\$ NewLeagu	Factor w/ 2 levels "A","N": 121221112

0.1 Data Processing

1. Remove records with missing values from the data (Hint: complete.cases() is useful)

Use model.matrix to create an X matrix for all predictors that contains dummy variables for categorical predictors (for predicting Salary). You can specify this as a formula in the model.matrix call, e.g.

```
x <- model.matrix(y ~ ., data)[, -1] # remove the y column
```

3. Create a Y vector of Salary information.

0.2 Ridge Regression

The glmnet() function in the glmnet package can perform both ridge regression and the lasso. This is done with the specification of a parameter alpha. If alpha $=0$ then a ridge regression model is fit and if alpha $=1$ then the lasso is fit.

By default, glmnet performs ridge regression for an automatically selected range of values, but we can instead pass a vector of values.

1. Create a vector of λ values from $\lambda=.01$ to $\lambda=10^{1} 0$ of length 100 .
2. Fit a ridge regression model for each λ in your grid.

Note, by default glmnet will standardize the X variables.
3. Make a line plot of coefficient corresponding to each λ. You should have an individual line for each variable with coefficient value on the y-axis and λ on the x axis. What happens to your coefficients as λ increases?
4. Use cv.glmnet to perform 10 -fold cross validation and get an estimate of the test MSE for each λ in your grid. Which λ would you choose and why?

0.3 Lasso

1. Fit the lasso model for each λ in your grid.
2. Make a line plot of coefficient corresponding to each λ. You should have an individual line for each variable with coefficient value on the y-axis and λ on the x axis. (Hint: coef may be a useful function). What happens to your coefficients as λ increases?
3. Use cv.glmnet to perform 10 -fold cross validation and get an estimate of the test MSE for each λ in your grid. Which λ would you choose and why?

0.4 Principal Components Regression

The pcr() function in the pls package can perform principal components regression.

1. Fit the PCR model using the pcr command. A couple tips: a) setting scale = TRUE will standardize your data prior to fitting the model, and b) setting validation $=$ TRUE will perform 10 -fold cross validation for each value of M.
2. Create a plot of the CV MSE (note root MSE is reported) vs. M.
3. When does the smallest cross-validation error occur? Which M would you choose for your final model?
4. The summary function also provides the percentage of variance explained in the predictors and the response using M principal components. How many principal components would we need to explain at least 80% of the variability in the predictors?
5. How much variability in Y is explained for your chosen value of M ?
