
Lab 8: Tree-based Models
We will use the Carseats data set in the ISLR package to predict high_sales for
carseats at 400 different stores.

## 'data.frame':    400 obs. of  11 variables: 
##  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ... 
##  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ... 
##  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ... 
##  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ... 
##  $ Population : num  276 260 269 466 340 501 45 425 108 131 ... 
##  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ... 
##  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 .
##  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ... 
##  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ... 
##  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ... 
##  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...

0.1 Data Preparation

1. Make a copy of the Carseats data frame called df.
2. Create a variable called high_sales in df that takes the value “high” if Sales > 8

and “low” otherwise.
3. Convert your high_sales column to be a factor.
4. Remove the Sales column from df.

library(ISLR) ## data package 
library(tidyverse) ## data manipulation 
library(knitr) ## tables 

 
## reproducible 
set.seed(445) 

 
## data 
str(Carseats)



0.2 Decision Trees

The tree package is used to contruct classi�cation and regression trees. We will con-
struct a classi�cation tree to predict

1. Using the tree function, �t a large classi�cation tree to predict high_sales using
every variable in df. [Hint: The syntax is very similar to lm]

2. Inspect your tree using summary. How many terminal nodes do you have? Whatt is
the training error rate?

[Note: The “deviance” reported is given by  where  is the
number of observations in the th terminal node that belongs to the th class. A
small deviance indicates a good �t to the training data.]

3. Use the plot function to visualize your tree. What is the most important indicator
of high sales?

[Hint: Adding the following line after you plot the tree will add labels.
text(tree.fit, pretty = 0) ]

4. Split your observations into a training and a test set with  records each. Estimate
the test error rate of your tree. [Hint: using type = "class" in your predict
function will get you the actual class predictions.]

5. Produce a confusion matrix for your test set.

6. Use the cv.tree function to perform cross-validation to determine the optimal level
of tree complexity. Using FUN = prune.misclass indicates that we want to use
the classi�cation error rate (instead of deviance) to guide the CV and pruning
process. Which  (corresponds to k in the output) should we choose?

7. Use the function prune.misclass to prune your tree to the chosen complexity.

8. Repeat 4-5 using your pruned tree. Which performs better?

0.3 Bagging & Random Forests

We will use the randomForest package to perform bagging and random forests. Recall
that bagging is simply a special case of random forests with .

library(tree) ## tree package
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1. Perform bagging on your training df to predict high_sales. Specify importance
= TRUE to also obtain information on the importance of each predictor.

2. Make a plot of the importance values for each predictor. What is the predictor with
the highes importance?

3. Estimate the test error rate using your bagged tree model.

4. Repeat 1-3 using a random forest with .

5. Compare the OOB confusion matrix to your test confusion matrix. [Hint: The
confusion element of the model output is OOB.]

0.4 Boosting

To perform boosting we will use the gbm function in the gbm package.

1. Fit a boosted tree ensemble to your training df predicting high_sales with 
 trees, shrinkage parameter of , and an interaction depth of .

We sure to include distribution = "bernoulli" to indicate a classi�cation
problem.

2. Estimate the test error rate using your boosted tree model and compare to all previ-
ously �t models.

library(randomForest) # random forests & bagging

m = √p

library(gbm) ## boosting package

B = 5, 000 λ = 0.1 d = 2


