Chapter 10: Usupervised Learning

INCS, IT CAN BE HARD TO EXPLAIN
THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Credit: https://xkcd.com/1425/
This chapter will focus on methods intended for the setting in which we only have a set of features X_{1}, \ldots, X_{p} measured on n observations.

$$
\begin{aligned}
& \text { We ara not interested in prediction because ve have no response } Y . \\
& \text { Goal: discover interestity things about the measurements } X_{1, \ldots}, X_{p} \\
& \text { - Is there an informative way } t \text { plot the data? } \\
& \text { - Can we discover subgroups among variables or observations? }
\end{aligned}
$$

1 The Challenge of Unsupervised Learning

Supervised learning is a well-understood area.
You now have a good grasp of supervised learning.
If you are asked to predict a binary response you hare many well devebped tod s at your disposal:
logistic regression, bagged trees, boosted trees, LDA, RF, SUM, etc.
and have a clear understanding of how to assess quality of your results:

$$
\begin{aligned}
& \text { (ross-validation, validation on an indepardut test set } \\
& \quad \rightarrow \text { loo, k-fold, er. }
\end{aligned}
$$

In contrast, unsupervised learning is often much more challenging.
more subjective, no single goal for the analysis, e.g.predictiom.

Unsupervised learning is often performed as part of an exploratory data analysis.
lIst part of analysis before models are fit t.

It can be hard to assess the results obtained from unsupervised learning methods.
No unitusally accepted mechanism for performing cross-validation or validation on a test at

Because there is no way to "check our work" with rasponn variable

$$
\rightarrow \text { we don't know the true answer! }
$$

Techniques for unsupervised learning are of growing importance in a number of fields.
cancer research: assay gene expression lends in 100 patriots and look for subgroups among uncer samples $t \pi$ better understand the disease.

Online shopping: identify similar groups of shoppers and show preferential items that they may be particularly interested in.
many noisy databases with ur unique idatifying attributes

$$
\rightarrow \text { can we find th matches or links? }
$$

2 Principal Components Analysis

We have already seen principal components as a method for dimension reduction.

$$
\begin{aligned}
& \text { When faced with a large sit of correlated variables, we use principal componerts to summonses. } \\
& \text { with a smaller number of "representative" variables tat collectively explain most of } \\
& \text { pe variability in our original dotaset. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PC directions = directions in feature space abngwhich original data ore highly variable. } \\
& \longrightarrow \text { define linus and subspaces that are as close as possith to te data dona. } \\
& P C R=\text { use principal components as predictors in a regression model instead of } \\
& \text { onyinal variables. }
\end{aligned}
$$

Principal Components Analysis ($P C A$) refers to the process by which principal components are computed and the subsequent use of these components to understand the data.

$$
\text { Unsupervised approach (involves only features } X_{1, \ldots} X_{p} \text {, no response } Y \text {). }
$$

Apart from producing derived variables for use in supervised learning, PCA also serves as a tool for data visualization.
visualizing observations or of variables.
2.1 What are Principal Components?

$$
x_{1}, \ldots, x_{p}
$$

Suppose we wish to visualize n observations with measurements on a set of p features as part of an exploratory data analysis.

We could do this by examine 2D scatteplofs of the data which contain n observations on 2 fatiores.

$$
\Rightarrow\binom{p}{2}=\frac{p(p-1)}{2} \text { scalterplots, e.g. } w / p=10 \Rightarrow 45 \text { plots. }
$$

- Too many to look at.
- likely no plot will be informative because bey only contain a small faction of information in our data.

$$
\prod^{\text {For visualization }} \text { in high dimensions. }
$$

Goal: We would like to find a low-dimensional representation of the data that captures as much of the information as possible.

Then plot observations in lower dimensional space.

PCA provides us a tool to do just this.
It finds low-dimensional representation of a data set that contains as much as possible of the variation (information).

Idea: Each of the n observations lives in p dimensional space, but not all of these dimensons are equally interesting.

PCA seeks a small number of dimensions that are as inforesitin as possible. "interesting" = amount observations vary along each dimension.

Each dimension found in PCA is a linear combination of ρ features.

The first principal component of a set of features X_{1}, \ldots, X_{p} is the normalized linear combination of the features

$$
z_{1}=\phi_{11} x_{1}+\phi_{21} x_{2}+\ldots+\phi_{p 1} x_{p}
$$

Abralized: $\sum_{j=1}^{p} \phi_{j i}^{2}=1$ (otherwise bee could result in abititaily loge variance).
$\phi_{11}, \ldots, \phi_{p 1}$ are called "loadings" of first principal component $\phi_{1}=\left(\phi_{11}, \ldots, \phi_{p 1}\right)^{\top}$ "loading vector"
that has the largest variance.

Given a $n \times p$ data set \boldsymbol{X}, how do we compute the first principal component?
(1) Assume each variable has been centered (i.e. each column has mean zero) - orly cure abort variances.
(2) lock for lines combination of the from

$$
z_{1 i}=\phi_{11} x_{i 1}+\phi_{21} x_{i 2}+\ldots+\phi_{p 1} x_{i p}
$$

$w /$ largest variance, subject to

$$
\sum_{j=1}^{p} \phi_{j i}^{2}=1
$$

i.e. Solve the following obtimization problem:

$$
\operatorname{maximize}_{\phi_{11,-n} \phi_{p 1}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j 1} x_{i j}\right)^{2}\right\} \text { subject to } \sum_{j=1}^{p} \phi_{i=}^{2}=1 \text {. }
$$

can write this way b/c columns we centered

$$
\Rightarrow \frac{1}{n} \sum_{i=1}^{n} x_{i j}=0 \Rightarrow \frac{1}{n} \sum_{i=1}^{n} z_{i i}=0
$$

so above is variance of $z_{i 1}, i=1, \ldots, n$.
Solved using eigen decomposition (beyond suope of this class).
$z_{11}, \ldots, z_{\text {in }}$ are called "scores" of the first principal component.

There is a nice geometric interpretation for the first principal component.

$$
\begin{aligned}
& \text { The loading rector } \phi_{1} \text { defines the diretion in the feature space along wick the data vary pe most } \\
& \text { If we project } n \text { data points onto this direction we get the scores } z_{111} \text {.., } z_{1 n} \text {. }
\end{aligned}
$$

After the first principal component Z_{1} of the features has been determined, we can find the second principal component, Z_{2}. The second principal component is the linear combination of X_{1}, \ldots, X_{p} that has maximal variance out of all linear combinations that are uncorrelated with Z_{1}.

The Second principal component scores are

$$
z_{i 2}=\phi_{12} x_{i 1}+\ldots+\phi_{p 2} x_{i p}
$$

$$
\varnothing_{2}=\text { second prircipal component loading vector }
$$

$$
\begin{aligned}
& Z_{2} \text { uncorrelated u/ } Z_{1} \\
& \Leftrightarrow
\end{aligned} \begin{aligned}
& p=2 \\
& \phi_{2} \text { orthogonal to } \phi_{1} \\
& \text { in 2D space, thee is only ore possibility tor } \phi_{2} \\
& B_{u} t p>2 \text { there are multiple options orthogonal. }
\end{aligned}
$$

To find Z_{2}, solve a similes optimization problem $L /$ additional constraint:

$$
\operatorname{maximize}_{\phi_{21,-,}, \phi_{2 p}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{p} \phi_{j 2} x_{i j}\right)^{2}\right\}
$$

$$
\text { Subject to } \sum_{j=1}^{p} \phi_{j 2}^{2}=1 \text { and } \phi_{2} \text { orthogonal ta } \phi_{1}\left(\sum_{j=1}^{p} \phi_{j 2} \phi_{j 1}=0\right) \text {. }
$$

Once we have computed the principal components, we can plot them against each other to produce low-dimensional views of the data.

```
    each of the 50 states, \# arrests per 100,000 residents for each of 3 crimes
    str(USArrests)
```

 \#\# 'data.frame': 50 obs. of 4 variables:

\#\# \$ Assault : int 236263294190276204110238335211 ...

pca <- prcomp(USArrests, center = TRUE, scale = TRUE) \# get loadings
summary(pca) \# summary
\#\# Importance of components:
\#\# PC1 PC2 PC3 PC4
\#\# Standard deviation $\quad 1.57490 .99490 .597130 .41645$
\rightarrow \#\# Proportion of Variance 0.62010 .24740 .089140 .04336
\#\# Cumulative Proportion , 0.6201 0.8675, 0.956641 .00000
First two parcipel componeats explain 86.75% of vanability in tee det a
last bro muly $13 \% \Rightarrow$ locking at first 2 is good summay.
pca\$rotation \# principal components loading matrix

	φ_{1}	φ_{2}	ρ_{3}	ρ_{4}
\#\#	PC1	PC2	PC3	PC4
\#\# Murder	-0.5358995	0.4181809	-0.3412327	0.64922780
\#\# Assault	-0.5831836	0.1879856	-0.2681484	-0.74340748
\#\# UrbanPop	-0.2781909	-0.8728062	-0.3780158	0.13387773
\#\# Rape	-0.5434321	-0.1673186	0.8177779	0.08902432

 \#\# plot scores + directions
 biplot(pca)
more crime.

First loading places approximately equal weight on 3 crimes and less weight on Urban pop.
\Rightarrow this component \approx measure of serious crimes
Second loading places most weight on Urban pep $\Rightarrow \approx$ lead of vabanization in act ate.

2.2 Scaling Variables

We've already talked about how when PCA is performed, the varriables should be centered to have mean zero.

Also the results dead an whether variable have ben individualf scaled to have sore sd.

This is in contrast to other methods we've seen before.
e.g. line regression when we multiply available by c tecorrespanding coeffizat is change by a factor of $\frac{1}{c}$.

PC
Uadisiciblle for PCA to depend on something as arbitrary as scale \Rightarrow scale each variable to have st. $\operatorname{dev}=1$.
UNLESS: all variables are measured on same units \Rightarrow might not want to scale ton.

2.3 Uniqueness

Each principal component loading vector is unique, up to a sign flip.

$$
\begin{aligned}
& \Rightarrow \text { diffeet software should result in same pron: component loading renters, but sign might flip. } \\
& \text { signs may differ because each principal component loading specifiers a directim inp-space } \\
& \downarrow \\
& \text { Flipping the sign has no effect since te direction doesn't chaye. a line tut extuds in either } \\
& \text { direction }
\end{aligned}
$$

Similarly, the score vectors are unique up to a sign flip.

$$
\operatorname{Var}(z)=\operatorname{Var}(-z)
$$

2.4 Proportion of Variance Explained

We have seen using the USArrests data thatwe can summarize 50 observations in 4 dimansions using just the first two principal component score vectors and the first two erincipal component vectors.

Question:

How much of the information in a given data sit is lost by projecting he observations on to the first two principal component rectors?

More generally, we are interested in knowing the proportion of variance explained (PVE) by each principal component.

2.5 How Many Principal Components to Use

In general, a ntimesp matrix \boldsymbol{X} has $\min (n-1, p)$ distinctt principal components.

Rather, we would like to just use the first few principal components in order to visualize or interpret the data.

We typically decide on the number of principal components required by examining a scree plot.

2.6 Other Uses for Principal Components

We've seen previously that we can perform regression using the principal component score vectors as features for dimension reduction.

Many statistical techniques can be easily adapted to use the $n \times M$ matrix whose columns are the first $M \ll p$ principal components.

This can lead to less noisy results.

