
Chapter 10: Usupervised Learning

Credit: https://xkcd.com/1425/

This chapter will focus on methods intended for the setting in which we only have a set of
features  measured on  observations.

:
we are not interested in prediction because ve have no response y

.

-

discover interesting things about the measurements ×
, , - → XpGoal :

- Is there an informative way to plot the data?

•

Can we discover subgroups among
variables or observations ?
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1 The Challenge of Unsupervised Learning
Supervised learning is a well-understood area.

In contrast, unsupervised learning is often much more challenging.

Unsupervised learning is often performed as part of an exploratory data analysis.

It can be hard to assess the results obtained from unsupervised learning methods.

Techniques for unsupervised learning are of growing importance in a number of �elds.

You now have a good grasp of supervised learning .

If you are asked to predict a binary response you have many
well developed tools at Your

disposal :

logistic regression
, bagged trees, boosted trees, LDA , RF, SUM, etc .

And have a clear understanding of how to assess quality of your results
:

cross - validation, validation on an independent test set

↳ Loo
,
k-fold

,
etc

.

More subjective , no single goal for the analysis , e. g. prediction

-

1st part of analysis before models are fit.

No universally accepted mechanism for performing cross-validation or validation on a test at

Because there is no way
to "check our work

" with response variable

→ we don't know te the answer !

ccincerresearch :

assay gene expression tends in 100 patients and look for subgroups

among Lancer samples to better understand the disease.

Onlineshopping : identify similar groups of shoppers and show preferential
items that they

may be particularly interested in.

resolution
: Mary noisy databases without unique identifying attributesmynseirch Entity

→ can we find the matches or links?
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2 Principal Components Analysis
We have already seen principal components as a method for dimension reduction.

Principal Components Analysis (PCA) refers to the process by which principal compo-
nents are computed and the subsequent use of these components to understand the data.

Apart from producing derived variables forr use in supervised learning, PCA also serves
as a tool for data visualization.

When faced with a large set of correlated variables, we use principal components to summarise .

with a smaller number of
"

representative
"

variables that collectively explain mostof

tire variability in our original dataset.

PC directions = directions in feature space along which original data are highly variable .

↳ deth lines and subspaces that are as
close as poss.tk

to te data cloud.

PCR = use principal components as predictors in a regression model insteadof

original variables .

-
=

Unsupervised approach (involves only features ✗
. >→ Xp ,

no response Y) .

E

-

visualizing observations or of variables.
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2.1 What are Principal Components?

Suppose we wish to visualize  observations with measurements on a set of  features as
part of an exploratory data analysis.

Goal: We would like to �nd a low-dimensional representation of the data that captures as
much of the information as possible.

PCA provides us a tool to do just this.

Idea: Each of the  observations lives in  dimensional space, but not all of these dimen-
sions are equally interesting.

✗
, ,
-→ Xp

We could do this by exiamiiny 2D scatterplots of the data which contain n observations on 2features
.

⇒ (1) = P' scatter plots , e-g.hr/p-- to ⇒ 45 plots.

- Too many to look at.

-

likely no plot will be informative because they only contain a small fraction of information

in our data
.

for
visualization

in high
dimensions

.
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Then plot observations in lower dimensional space.

It finds low - dimensional representation of a data set that contains
as much as possible

of the variation ( information .

PCA seeks a small number of dimensions that are as interesting as possible

" interesting
"

= amount observations vary along each dimension .

Each dimension fund is PCA is a linear combination of p features.
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The �rst principal component of a set of features  is the normalized linear com-
bination of the features

that has the largest variance.

Given a  data set , how do we compute the �rst principal component?

-

2-
,
= § , ,X ,

t 0/2, ✗at -
. - top , Xp

normalized :
ÉOJ? =D ( otherwise we could result in arbitrarily large variance )

.

5- I[µ , , , µ , www.y.aw.g,
,,

og µ,, pinya , a.np.nu, g. = ,,, , , . .,µy
"

loading vector
"

① Assume each variable has been centered ( i. e. each column has mean zero ) - only care •
↳+

variances
.

② look for linear combination of te form

2-
Ii
= $11 Xi, t cfzixiz + -

.

it
pi Xip

w/ largest variance , subject to
p

EET =L

j= ,

i.e. solve the following obtimizatim problem :

n p p

maximize { ÷ E ( 20;,xi;]} subject to 2%5--1 .

I =\ j=, j= ,

u,
- →

pi

i
can write this way b/c columns are centered

⇒ d- Éxii=o ⇒ 1- Ézi = 0
in i=

,

so above is variance of Zip , i -4 , - - , n .

Solved using eigen decomposition ( beyond scope of this class) .

2-
, , ,

. - , Zin are called
"

scores " of tie first principal component.
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There is a nice geometric interpretation for the �rst principal component.

After the �rst principal component  of the features has been determined, we can �nd the
second principal component, . The second principal component is the linear combination
of  that has maximal variance out of all linear combinations that are uncorrelat-
ed with .

The loading rector § , defines
the direction 1h the feature space -along which the data vary be most

If we project n data points onto this direction he get th score, Z, , , - ,
2-
in

-

-

The second principal component scores are

Zi 2 = 0/12 ✗ i, t . . + paxip

a
= second principal component loading vector

% """""d " £ "

[
"

⇐ in 20 space, here
is only one possibility for %

a orthogonal the ¢ , But p
> 2 there are multiple options orthogonal-

To find Za
,

solve a similar optimization problem if additional constraint :

maximize { ÷ :É( ¥9s:&:-P ]
¢211 - - s 2p

p p

subject to §
,

is =\ and ¢2 orthogonal hi ¢. ( E iaoir = 0) .

j '- I
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Once we have computed the principal components, we can plot them against each other to
produce low-dimensional views of the data.

## 'data.frame':    50 obs. of  4 variables: 
##  $ Murder  : num  13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ... 
##  $ Assault : int  236 263 294 190 276 204 110 238 335 211 ... 
##  $ UrbanPop: int  58 48 80 50 91 78 77 72 80 60 ... 
##  $ Rape    : num  21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...

## Importance of components: 
##                           PC1    PC2     PC3     PC4 
## Standard deviation     1.5749 0.9949 0.59713 0.41645 
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336 
## Cumulative Proportion  0.6201 0.8675 0.95664 1.00000

##                 PC1        PC2        PC3         PC4 
## Murder   -0.5358995  0.4181809 -0.3412327  0.64922780 
## Assault  -0.5831836  0.1879856 -0.2681484 -0.74340748 
## UrbanPop -0.2781909 -0.8728062 -0.3780158  0.13387773 
## Rape     -0.5434321 -0.1673186  0.8177779  0.08902432

str(USArrests)

pca <- prcomp(USArrests, center = TRUE, scale = TRUE) # get loadings 
 

summary(pca) # summary

pca$rotation # principal components loading matrix

## plot scores + directions 
biplot(pca)

each of the 50 states
,
# arrests per

too
,
ooo residents for end of 3 crimes

% population
in
→

state
living

in

an
urban area

.

-

First two principal components explain
86.75% of variability in

the data

→

last two only 13% ⇒ looking at first 2 is good summary .

-

0. $2 §, %

-

--
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morecy
low crime

Yi! !
www.bniat.is

crime
related

variables
are

""
*& "

①"
"

states .

woreuµ,µi
scores

.

high
wire low crime

uiguorbwiittm low urbanization -

first loading places approximately equal weight on 3 crimes and less

weight on Urban pop
.

⇒ this component I measure af serious crimes

second leading places most weight on
Urban pep⇒ I level of urbanization

in a state
.
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2.2 Scaling Variables

We’ve already talked about how when PCA is performed, the varriables should be cen-
tered to have mean zero.

This is in contrast to other methods we’ve seen before.

Also the results depend on whether Variable have been individually scaled to have sure sd
.

e.g.
linear regression when we multiply a variable by a the corresponding coefficient is charge by
a factor of & .

same data as

before
,
didn't scale .

Variables are measured in

different units

crime :#1100,000 people

Urfa. pop : percentage

✓
large loading on

assaultt for 1st PC

( large variance die
to

itsscale)
.

Undesirable for PCA to depend on something as arbitrary as scale ⇒ scale each variable than

St. dev = 1
.

UNl : all variables are measured on some units ⇒ might not want to scale ten.
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2.3 Uniqueness

Each principal component loading vector is unique, up to a sign �ip.

Similarly, the score vectors are unique up to a sign �ip.

2.4 Proportion of Variance Explained

We have seen using the USArrests data that e can summarize  observations in  di-
mensions using just the �rst two principal component score vectors and the �rst two prin-
cipal component vectors.

Question:  

More generally, we are interested in knowing the proportion of vriance explained (PVE)
by each principal component.

⇒ different software should result in some pin : component loading vectors , but sign might flip.

signs may differ because each principal component loading specifies a direction in
p
- space

t
a line that extends in eiker

flipping the sign has no effect since te diatom doesn't change .
di"'m

Var ( Z) = Vcr C-Z)
.

w

→
variability explained

.

How much of the information in a given data set is lost by projecting tie observations on to the first

two principal component rectors?

a-
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2.5 How Many Principal Components to Use

In general, a  matrix  has  distinctt principal components.

Rather, we would like to just use the �rst few principal components in order to visualize or
interpret the data.

We typically decide on the number of principal components required by examining a scree
plot.
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2.6 Other Uses for Principal Components

We’ve seen previously that we can perform regression using the principal component score
vectors as features for dimension reduction.

Many statistical techniques can be easily adapted to use the  matrix whose columns
are the �rst  principal components.

This can lead to less noisy results.


