Chapter 1: Introduction

Statistical learning refers to a vast set of tools for understanding data.

https://xkcd.com/2341/
Alternative text: I vaguely and irrationally resent how useful WebPlotDigitizer is.
These tools can broadly be thought of as

Examples:

Wage data

Factors related to wages for a group of males from the Atlantic region of the United States. We might be interested in the association between an employee's age, education, and the calendar $\underbrace{\text { year }}_{\text {inputs }}$ on his $\underbrace{\text { wage. }}_{\text {output. }} \quad \underset{\text { relationship }}{\downarrow}$

Wage looks to increase $v /$ age then deceases after 60

slight increase in
wage over time int lots of variability.

education
Wage typically higher for individuals w/ greater education cones.

We could use 1 factor to predict wage, but lots of variability. $>$ Would be better (more accurate) to Combine age, edrication, year and account for nonlinear relationship between age and wage.

Gene Expression Data
Consider the NCI60 data, which consists of 6,830 gene expression measurements for 64 cancer lines. We are interested ind determining whether there are groups among the cell lines based on their gene expression measurements. We don't have known output (cancer type) instead we can look for structure un data

(xi) reduce 6830 gene expansion to to 2 . numbers

cell lines wi same cancer type are "close" in 20 representation and our clustering (top) was able to fund some of tree types,

1 A Brief History

Although the term "statistical machine learning" is fairly new, many of the concepts are not. Here are some highlights:
early $19^{\text {th }}$ century - Legendre and Gauss publish method of least squares \Rightarrow regression.
1936 - Linear discriminant analysis
1940 - Logistic regression.
1960 s - Bayesian Methods (1980s popularized)
1970 - generalized linear regression (includes linear logistic)
more data complexity.

1980 s - Bricman a friedman introduced classification § regression trees (random forest)
1990 - ML Boom! Shift to data-driven approach
Support vector Machines
recurrent neural nets.
2000s - Kernel methods, unsupervised learnity becomes more popular 20103 - "deep learning"

2 Notation and Simple Matrix Algebra
I'll try to keep things consistent notationally throughout this course. Please call me out if I don't!
n - number of distinct data points or observations in our sample.
$p=$ \# of variables available for making predictions e.g. Wage data $p=12$ variables $\sigma n=3,000$ people.

$x_{x_{i j}}$ - value of the $\hat{V}^{\text {th }}$ variable for itu individual.

$$
\begin{aligned}
& i=1, \ldots, n \\
& j=1, \ldots, \rho .
\end{aligned}
$$

mp ital.
bod

X

$$
\begin{aligned}
\text { exp matrix whose } & x_{i}=\underline{x}_{i}=\text { th row of } \mathbb{X} \text { (vector of length } p \text {) } \\
& \left.=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \vdots & i \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right) \quad \begin{array}{c}
x_{i 1} \\
\vdots \\
x_{i p}
\end{array}\right)
\end{aligned}
$$

\boldsymbol{y} - variable on which we wish to make a prediction
$y_{i}=i^{\text {in }}$ dsservation of y

$$
\underset{\uparrow}{a, \boldsymbol{A}, A_{K}} \text { random variable } \quad a=\text { rector }
$$

scalar matrix
$a \in \mathbb{R} \leftharpoondown$ indicates dimension

$$
A \in \mathbb{R}^{r \times s}=r \times s \text { matrix }
$$

$$
y \in \mathbb{R}^{n}
$$

must be equal.
Matrix multiplication
Let $A \in \mathbb{R}^{r \times 2}$ " and $B \in \mathbb{R}^{d x s}$ the product of A and B is " $A B^{\prime \prime} \rightarrow A$ multiply rows of columns of

$$
\begin{aligned}
& (A B)_{i j}=\sum_{k=1}^{d} a_{i k} b_{k j} \\
& \text { e.g. } A=\left(\begin{array}{ll}
1 & 2 \\
3
\end{array}\right), B=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right) \Rightarrow A B=\left(\begin{array}{cc}
1 \times 5+2 \times 7 & 1 \times 6+2 \times 8 \\
3 \times 5+4 \times 7 & 3 \times 6+4 \times 8
\end{array}\right)=\left(\begin{array}{cc}
19 & 22 \\
43 & 50
\end{array}\right) \\
& \text { result is } r \times s \text { matrix. } .
\end{aligned}
$$

