Chapter 3: Linear Regression

Linear regression is a simple approach for supervised learning when the response is quan-
titative. Linear regression has a long history and we could actually spend most of this se-
—— . .

mester talking about it.

Although linear regression is not the newest, shiniest thing out there, it is still a highly
used technique out in the real world. It is also useful for talking about more modern tech-
niques that are generalizations of it.
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We will review some key ideas underlying linear regression and discuss the least squares
approach that is most commonly used to fit this model.

Linear regression can help us to answer the following questions about our Advertising
data:
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1 Simple.Linear, Regression

Simple Linear Regression is an approach for predj:éﬁtl)ng a quanﬂﬁaﬁm response Y on the
basis of a single predictor variable X.

It assumes:
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Which leads to the following model:
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For example, we may be interested in regressing sales onto TV by fitting the model
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Once we have used training data to produce estimates an(@, we can predict future

sales on the basis of a particular TV advertising budget.
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1.1 Estimating the Coefficients

In practice, By and B are unknown, so before we can predict g, we must use our training
data to estimate them.
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1.1 Estimating the Coefficients 3

Let (z1,y1),--., (x4, y,) represent n observation pairs, each of which consists of a mea-
surement of X and Y.
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The least squares approach results in the followingestimates:
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1 Simple Linear Regression

We can get these estimates using the following commands in R:

## load the data in
ads <- read_csv("../data/Advertising.csv")

## fit the model
model <- lm(sales ~ TV, data = ads)

WS U peudy et e
//ﬂsummary(model) MeLK yNX
Ly Suanel “regress f L, X
%J‘H{ ##
## Call:

o>

## lm(formula = sales ~ TV, data = ads)

## Residuals:

## Min 10 Median 30 Max
## -8.3860 -1.9545 -0.1913 2.0671 7.2124
##

## Coefficients:

## (Intercept
## TV
## ——-

7.032594
0.047537

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.

## Residual standard error: 3.259 on 198 degrees of freedom

Estimate\Std. Error t value Pr(>|t])
0.457843 15.36 <2e-16 ***
0.002691 17.67 <2e-16 ***

05 '

## Multiple R-squared: 0.6119, Adjusted R-squared:
## F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16

. 0.1

0.6099
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1.2 Assessing Accuracy 5

1.2 Assessing Accuracy

Recall we assume the true relationship between X and Y takes the form
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and when we fit the model to the training data, we get the following estimate of the popu-

lation model
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In general, is not known, so we estimate it with the residual standard error,

RSE = \/RSS/(n — 2).

t«nm‘M Cum of Samares.
We can use these standard errors to compute confidence intervals and perform hypothesis

tests.




6 1 Simple Linear Regression

Once we have decided that there is a significant linear relationship between X and Y that
is captured by our model, it is natural to ask

To what extent does the model fit the data?

The quality of the fit is usually measured by the residual standard error and the R?
statistic.

RSE: Roughly speaking, the RSE is the average amount that the response will deviate
from the true regression line. This is considered a measure of the lack of fit of the model to
the data.

R2: The RSE provides an absolute measure of lack of fit, but is measured in the units of Y.
So, we don’t know what a “good” RSE value is! R? gives the proportion of variation in Y’
explained by the model.

summary (model)

##

## Call:

## 1lm(formula = sales ~ TV, data = ads)

##

## Residuals:

## Min 10 Median 30 Max

## -8.3860 -1.9545 -0.1913 2.0671 7.2124

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 7.032594 0.457843 15.36 <2e-16 **x*

## TV 0.047537 0.002691 17.67 <2e-16 **x*

## ———

## Signif. codes: 0 '**x' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 3.259 on 198 degrees of freedom
## Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
## F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16



2 Multiple Linear Regression

Simple linear regression is useful for predicting a response based on one predictor vari-
able, but we often have more than one predictor.

How can we extend our approach to accommodate additional predictors?

We can give each predictor a separate slope coefficient in a single model.

We interpret 3; as the “average effect on Y of a one unit increase in X}, holding all other
predictors fixed”.

In our Advertising example,



8 2 Multiple Linear Regression

2.1 Estimating the Coefficients

As with the case of simple linear regression, the coefficients o, 51, . . ., Bp are unknown
and must be estimated. Given estimates BO, Bl, e ,Bp, we can make predictions using the
formula

The parameters are again estimated using the same least squares approach that we saw in
the context of simple linear regression.

model 2 <- lm(sales ~ ., data = ads[, -11])

summary (model 2)

##

## Call:

## 1lm(formula = sales ~ ., data = ads[, -1])

##

## Residuals:

## Min 10 Median 30 Max

## -8.8277 -0.8908 0.2418 1.1893 2.8292

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 2.938889  0.311908 9.422 <2e-16 ***
## TV 0.045765 0.001395 32.809 <2e-16 **x*
## radio 0.188530 0.008611 21.893 <2e-16 ***
## newspaper -0.001037 0.005871 -0.177 0.86

## ——=

## Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
## F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16



2.2 Some Important Questions

2.2 Some Important Questions

When we perform multiple linear regression we are usually interested in answering a few
important questions:

1.

2.2.1 Is there a relationship between response and predictors?

We need to ask whether all of the regression coefficients are zero, which leads to the fol-
lowing hypothesis test.

H(]I
H,:

This hypothesis test is performed by computing the F-statistic
F =
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2 Multiple Linear Regression

2.2.2 Deciding on Important Variables

After we have computed the F-statistic and concluded that there is a relationship between
predictor and response, it is natural to wonder

Which predictors are related to the response?

We could look at the p-values on the individual coefficients, but if we have many variables
this can lead to false discoveries.

Instead we could consider variable selection. We will revisit this in Ch. 6.

2.2.3 Model Fit

Two of the most common measures of model fit are the RSE and R2. These quantities are
computed and interpreted in the same way as for simple linear regression.

Be careful with using these alone, because R? will always increase as more variables are
added to the model, even if it’s just a small increase.

summary (model 2)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = sales ~ .,

Residuals:
Min 10 Median
-8.8277 -0.8908 0.2418

Coefficients:

Estimate Std.
0.

(Intercept) 2.938889
TV 0.045765
radio 0.188530
newspaper -0.001037

Signif. codes: 0 '***'

Residual standard error:

data = ads[, -1])

30 Max

1.1893 2.8292

Error t value Pr(>|t])
311908 9.422 <2e-16 **%*

0.001395 32.809 <2e-16 ***

0.008611 21.893 <2e-16 **x*

0.005871 =-0.177 0.86

0.001 '#*' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.686 on 196 degrees of freedom

Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16



2.2 Some Important Questions

summary(lm(sales ~ TV + radio, data = ads))

##

## Call:

## 1lm(formula = sales ~ TV + radio, data = ads)
##

## Residuals:

11

## Min 10 Median 30 Max
## -8.7977 -0.8752 0.2422 1.1708 2.8328
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t])
## (Intercept) 2.92110 0.29449 9.919 <2e-16 ***
## TV 0.04575 0.00139 32.909 <2e-16 ***
## radio 0.18799 0.00804 23.382 <2e-16 ***
## ———
## Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.681 on 197 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
## F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
It may also be useful to plot residuals to get a sense of the model fit.
ggplot() +
geom_point(aes(model 2s$fitted.values, model 2Sresiduals))
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