
Chapter 3: Linear Regression
Linear regression is a simple approach for supervised learning when the response is quan-
titative. Linear regression has a long history and we could actually spend most of this se-
mester talking about it.

Although linear regression is not the newest, shiniest thing out there, it is still a highly
used technique out in the real world. It is also useful for talking about more modern tech-
niques that are generalizations of it.

We will review some key ideas underlying linear regression and discuss the least squares
approach that is most commonly used to �t this model.

Linear regression can help us to answer the following questions about our Advertising
data:

-

__

Ridge regression , lasso, logistic regression , GAms-n

-

l. Is thee a relationship between advertising and sales ?

i. e. should people spend money on ads?

2 . How strong is the relationship between ads g- sales ?

i.e. how well can he predict sales based on ads ?

3
.

Which media contribute to sales
?

y .
How accurately can we predict the effect of each medium on sales ?

5 .

How accurately can
we predict future sales ?

6. Is the relationship linear ?

7
.

Is there synergy among the advertising media ?

i.e. is $50k for TV and $50k for radio better than $100k on radio or

TV alone?
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1 Simple Linear Regression
Simple Linear Regression is an approach for predictiong a quantitative response  on the
basis of a single predictor variable .

It assumes:

Which leads to the following model:

For example, we may be interested in regressing sales onto TV by �tting the model

Once we have used training data to produce estimates  and , we can predict future
sales on the basis of a particular TV advertising budget.

1.1 Estimating the Coef�cients

In practice,  and  are unknown, so before we can predict , we must use our training
data to estimate them.

1. Simple linear Regression
simple Linear regression is an approach for predicting a quantitative response Y on the
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- random error term is Normally distributed
-

random error term has constant variance
.

Myer relationship
Y = ftp.xt E

E N N lo , d)
-

error assumptions

sales = pot pitv to
- -

unknown constants (interceptt slope )# n
" hot" = estimates or

"

parameters
"

,
" model coefficients"

g g
predictors

-

- -

8--8 + fix
I

"
particular value of ✗

=x
.

prediction of y

-

a fit the model
"



1.1 Estimating the Coef�cients 3

Let  represent  observation pairs, each of which consists of a mea-
surement of  and .

Goal: Obtain coef�cient estimates  and  such that the linear model �ts the available
data well.

The most common approach involves minimizing the least squares criterion.

The least squares approach results in the following estimates:

In the advertising data,
✗ = TV ad budget
y = sales

(4)Yi ) , - - ) (✗zoo , Yzoo) = training data from n
--200 markets

.
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We can get these estimates using the following commands in R:

##  
## Call: 
## lm(formula = sales ~ TV, data = ads) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.3860 -1.9545 -0.1913  2.0671  7.2124  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 7.032594   0.457843   15.36   <2e-16 *** 
## TV          0.047537   0.002691   17.67   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.259 on 198 degrees of freedom 
## Multiple R-squared:  0.6119, Adjusted R-squared:  0.6099  
## F-statistic: 312.1 on 1 and 198 DF,  p-value: < 2.2e-16

## load the data in
ads <- read_csv("../data/Advertising.csv")

## fit the model
model <- lm(sales ~ TV, data = ads)

summary(model)
Formula for specify data frame

.

Y model Ynx
" regress Y . . ×

"

get
results summary
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1.2 Assessing Accuracy

Recall we assume the true relationship between  and  takes the form

If  is to be approximated by a linear function, we can write this relationship as

and when we �t the model to the training data, we get the following estimate of the popu-
lation model

But how close this this to the truth?

In general,  is not known, so we estimate it with the residual standard error, 
.

We can use these standard errors to compute con�dence intervals and perform hypothesis
tests.
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E mean -zero random term

.
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,
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Ha :P ,
-1-0

? : Is § , far enough away from 0 to be confident it is nonzero ? How far is far enough?

depends on SECpip .
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Once we have decided that there is a signi�cant linear relationship between  and  that
is captured by our model, it is natural to ask

To what extent does the model �t the data?

The quality of the �t is usually measured by the residual standard error and the 
statistic.

RSE: Roughly speaking, the RSE is the average amount that the response will deviate
from the true regression line. This is considered a measure of the lack of �t of the model to
the data.

: The RSE provides an absolute measure of lack of �t, but is measured in the units of .
So, we don’t know what a “good” RSE value is!  gives the proportion of variation in 
explained by the model.

##  
## Call: 
## lm(formula = sales ~ TV, data = ads) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.3860 -1.9545 -0.1913  2.0671  7.2124  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 7.032594   0.457843   15.36   <2e-16 *** 
## TV          0.047537   0.002691   17.67   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 3.259 on 198 degrees of freedom 
## Multiple R-squared:  0.6119, Adjusted R-squared:  0.6099  
## F-statistic: 312.1 on 1 and 198 DF,  p-value: < 2.2e-16

summary(model)

⇒ reject .

-

i.e. will be between 0 and 1
.
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2 Multiple Linear Regression
Simple linear regression is useful for predicting a response based on one predictor vari-
able, but we often have more than one predictor.

How can we extend our approach to accommodate additional predictors?

We can give each predictor a separate slope coef�cient in a single model.

We interpret  as the “average effect on  of a one unit increase in , holding all other
predictors �xed”.

In our Advertising example,

We could run separate SLR for each predictor .
But how to make a single prediction for y

based
on
levels of all predictors?

Also each model would ignore the other predictors. . . what if they are related ?

↳misleading results.

solution
"

-

association with response

I ← predictor
Y = pot pi , + pit . - rtppx , t E

-

-

sales = pot p ,
TV + pz radio + P, newspaper + Ee

.
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2.1 Estimating the Coef�cients

As with the case of simple linear regression, the coef�cients  are unknown
and must be estimated. Given estimates , we can make predictions using the
formula

The parameters are again estimated using the same least squares approach that we saw in
the context of simple linear regression.

##  
## Call: 
## lm(formula = sales ~ ., data = ads[, -1]) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.8277 -0.8908  0.2418  1.1893  2.8292  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  2.938889   0.311908   9.422   <2e-16 *** 
## TV           0.045765   0.001395  32.809   <2e-16 *** 
## radio        0.188530   0.008611  21.893   <2e-16 *** 
## newspaper   -0.001037   0.005871  -0.177     0.86     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.686 on 196 degrees of freedom 
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8956  
## F-statistic: 570.3 on 3 and 196 DF,  p-value: < 2.2e-16

# model_2 <- lm(sales ~ TV + radio + newspaper, data = ads)
model_2 <- lm(sales ~ ., data = ads[, -1])

summary(model_2)

-

-

Ñ=po+Ñx , t.at/3pxp .

now
instead
-
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.
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2.2 Some Important Questions

When we perform multiple linear regression we are usually interested in answering a few
important questions:

1. 

2. 

3. 

4. 

2.2.1 Is there a relationship between response and predictors?

We need to ask whether all of the regression coef�cients are zero, which leads to the fol-
lowing hypothesis test.

This hypothesis test is performed by computing the -statistic

Is atleast one of the predictors X , , . . , Xp useful in predicting
the

response?

Do all the predictors help
to explain Y, or is only a subset useful ?

How well does the model fit the data?

Given a set of predictor valves what response should we predict and how

accurate is that prediction?

linear

-

sipe

B. =pi - i .=pp=O

at least one Pj is nonzero .

(under the
null hypothesis

variance →(Tss-Rs ~ F W
.

explained Rss/ (n - p - 1)
Pon
- F'

by themodel [
variance
unexplained

If this ratio is large (
much larger than 1),

evidence against the null . Ho ,
evidence there is some relationship .
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2.2.2 Deciding on Important Variables

After we have computed the -statistic and concluded that there is a relationship between
predictor and response, it is natural to wonder

Which predictors are related to the response?

We could look at the -values on the individual coef�cients, but if we have many variables
this can lead to false discoveries.

Instead we could consider variable selection. We will revisit this in Ch. 6.

2.2.3 Model Fit

Two of the most common measures of model �t are the RSE and . These quantities are
computed and interpreted in the same way as for simple linear regression.

Be careful with using these alone, because  will always increase as more variables are
added to the model, even if it’s just a small increase.

##  
## Call: 
## lm(formula = sales ~ ., data = ads[, -1]) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.8277 -0.8908  0.2418  1.1893  2.8292  
##  
## Coefficients: 
##              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  2.938889   0.311908   9.422   <2e-16 *** 
## TV           0.045765   0.001395  32.809   <2e-16 *** 
## radio        0.188530   0.008611  21.893   <2e-16 *** 
## newspaper   -0.001037   0.005871  -0.177     0.86     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.686 on 196 degrees of freedom 
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8956  
## F-statistic: 570.3 on 3 and 196 DF,  p-value: < 2.2e-16

# model with TV, radio, and newspaper
summary(model_2)

-

→
forward selection ,

- -

backwards selection
,

Lasso

__

trcould lead to overfitting .
how to avoid? Use test data ! d. 5.

Jim
"
^"

R - - -

F-test

Ho :P , :-.- =pp=o

"

t=µ *
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##  
## Call: 
## lm(formula = sales ~ TV + radio, data = ads) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.7977 -0.8752  0.2422  1.1708  2.8328  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  2.92110    0.29449   9.919   <2e-16 *** 
## TV           0.04575    0.00139  32.909   <2e-16 *** 
## radio        0.18799    0.00804  23.382   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.681 on 197 degrees of freedom 
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8962  
## F-statistic: 859.6 on 2 and 197 DF,  p-value: < 2.2e-16

It may also be useful to plot residuals to get a sense of the model �t.

# model without newspaper
summary(lm(sales ~ TV + radio, data = ads))

ggplot() +
  geom_point(aes(model_2$fitted.values, model_2$residuals))

☐

\Ñ barely decreased ⇒ newspaper
not contributing much *

understanding variability
in sales.
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