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3 LDA
Logistic regression involves direction modeling  using the logistic func-
tion for the case of two response classes. We now consider a less direct approach.

Idea:

Why do we need another method when we have logistic regression?

1. 

2. 

3. 

"

linear discriminant analysis
"

directly
-

-

pwning
. Model the distribution of the predictors ✗ separately in each of the response

classes

↳ ( ginny) and then use Bayes theorem to flip these and get estimates for

→
P(Y=HX=x)

PCAI B) = P(BH¥¥#

When classes ae well- separated
,
the parameter estimates for logistic regression

are sup rising ly
unstable .

If n
is small and the distribution of predictors is approximately

normal

in each class
,
LDA is more stable than logistic regression .

We might have more than 2
response classes

.
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3.1 Bayes’ Theorem for Classi�cation

Suppose we wish to classify an observation into one of  classes, where .

In general, estimating  is easy if we have a random sample of ’s from the population.

Estimating  is more dif�cult unless we assume some particular forms.

-

Categorical Y can take on K possible distinct and unordered valves.

notating
- overall or

"

prior
"

probability that a randomly chosen observation comes from the

Ktn class
.

=P(X=x|y=k)
fdiscreted

*
t.nu:1#:::::::::::::--.....

probability that ✗ falls in a small region around
X Yim Y=

Kp
( BUT

A B plx⇒4Y=H PÑ We will use the abbreviation
=fkbc (Bayes theorem)

p ,< tx) as before .

Ej=iTetI
• Called the

"

posterior probability
"

tht

p(X=x,Y=k)
an observation comes from

Ktn class
-

P(X=x)p(is, given ✗=x.

-

Compute the fraction of training observations that come from the Kth class
.

-

If we can estimate field we can denlop a classifier that is

close to the " best " classifier lmore later)
.
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3.2 p = 1

Let’s (for now) assume we only have  predictor. We would like to obtain an estimate for 
 that we can plug into our formula to estimate . We will then classify an obser-

vation to the class for which  is greatest.

Suppose we assume that  is normal. In the one-dimensional setting, the normal den-
sity takes the form

Plugging this into our formula to estimate ,

We then assign an observation  to the class which makes  tthe largest. This is
equivalent to

Example 3.1 Let  and . When does the Bayes classi�er assign an observa-
tion to class ?

F- 1 .

--

assign to
uasswl esmymi- ↳

¥¥¥÷+µ,
Pdx)

highest
-

is
called the

izayesdasñt
"

"

tkH7=¥¥exp[_÷(x-ray]
and is known

to be
the

62 and µ,
variance and mean parameters for Kth class.

optimal
solution ,

i." ~
""
"

Let's also (for how) assume &= .
. .
= 6,2--62 (shared variance term)

.

no better
!
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In practice, even if we are certain of our assumption that  is drawn from a Gaussian dis-
tribution within each class, we still have to estimate the parameters 

.

The linear discriminant analysis (LDA) method approximated the Bayes classi�er by plug-
ging estimates in for .

Sometimes we have knowledge of class membership probabilities  that can be
used directly. If we do not, LDA estimates  using the proportion of training observa-
tions that belong to the th class.

The LDA classi�er assignes an observation  to the class with the highest value of
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##    pred 
## y       1     2 
##   1 18966  1034 
##   2  3855 16145

The LDA test error rate is approximately 12.22% while the Bayes classi�er error rate is
approximately 10.52%.

The LDA classi�er results from assuming that the observations within each class come
from a normal distribution with a class-speci�c mean vector and a common variance 
and plugging estimates for these parameters into the Bayes classi�er.



16 3 LDA

3.3 p > 1

We now extend the LDA classi�er to the case of multiple predictors. We will assume

Formally the multivariate Gaussian density is de�ned as
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In the case of  predictors, the LDA classi�er assumes the observations in the th
class are drawn from a multivariate Gaussian distribution .

Plugging in the density function for the th class, results in a Bayes classi�er

Once again, we need to estimate the unknown parameters .

To classify a new value , LDA plugs in estimates into  and chooses the class
which maximized this value.

Let’s perform LDA on the Default data set to predict if an individual will default on
their CC payment based on balance and student status.

## Call: 
## lda(default ~ student + balance, data = Default) 
##  
## Prior probabilities of groups: 
##     No    Yes  
## 0.9667 0.0333  
##  
## Group means: 
##     studentYes   balance 
## No   0.2914037  803.9438 
## Yes  0.3813814 1747.8217 
##  
## Coefficients of linear discriminants: 
##                     LD1 
## studentYes -0.249059498 
## balance     0.002244397

library(MASS) # package containing lda function
lda_fit <- lda(default ~ student + balance, data = Default)
lda_fit
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##       
##         No  Yes 
##   No  9644  252 
##   Yes   23   81

Why does the LDA classi�er do such a poor job of classifying the customers who default?

##         
##           No  Yes 
##   FALSE 9432  138 
##   TRUE   235  195

# training data confusion matrix
table(predict(lda_fit)$class, Default$default)

table(predict(lda_fit)$posterior[, "Yes"] > 0.2, Default$default)
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3.4 QDA

LDA assumes that the observations within each class are drawn from a multivariate
Gaussian distribution with a class-speci�c mean vector and a common covariance matrix
across all  classes.

Quadratic Discriminant Analysis (QDA) also assumes the observations within each class
are drawn from a multivariate Gaussian distribution with a class-speci�c mean vector but
now each class has its own covariance matrix.

Under this assumption, the Bayes classi�er assignes observation  to class  for
whichever  maximizes

When would we prefer QDA over LDA?
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4 KNN
Another method we can use to estimate  (and thus estimate the Bayes
classi�er) is through the use of -nearest neighbors.

The KNN classi�er �rst identi�es the  points in the training data that are closest to the
test data point , called .

Just as with regression tasks, the choice of  (neighborhood size) has a drastic effect on
the KNN classi�er obtained.
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5 Comparison
LDA vs. Logistic Regression

(LDA & Logistic Regression) vs. KNN

QDA


