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3 LDA
Logistic regression involves direction modeling  using the logistic func-
tion for the case of two response classes. We now consider a less direct approach.

Idea:

Why do we need another method when we have logistic regression?

1. 

2. 

3. 

"

linear discriminant analysis
"

directly
-

-

pwning
. Model the distribution of the predictors ✗ separately in each of the response

classes

↳ ( ginny) and then use Bayes theorem to flip these and get estimates for

→
P(Y=HX=x)

PCAI B) = P(BH¥¥#

When classes ae well- separated
,
the parameter estimates for logistic regression

are sup rising ly
unstable .

If n
is small and the distribution of predictors is approximately

normal

in each class
,
LDA is more stable than logistic regression .

We might have more than 2
response classes

.
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3.1 Bayes’ Theorem for Classi�cation

Suppose we wish to classify an observation into one of  classes, where .

In general, estimating  is easy if we have a random sample of ’s from the population.

Estimating  is more dif�cult unless we assume some particular forms.

-

Categorical Y can take on K possible distinct and unordered valves.

notating
- overall or

"

prior
"

probability that a randomly chosen observation comes from the

Ktn class
.

=P(X=x|y=k)
fdiscreted

*
t.nu:1#:::::::::::::--.....

probability that ✗ falls in a small region around
X Yim Y=

Kp
( BUT

A B plx⇒4Y=H PÑ We will use the abbreviation
=fkbc (Bayes theorem)

p ,< tx) as before .

Ej=iTetI
• Called the

"

posterior probability
"

tht

p(X=x,Y=k)
an observation comes from

Ktn class
-

P(X=x)p(is, given ✗=x.

-

Compute the fraction of training observations that come from the Kth class
.

-

If we can estimate field we can denlop a classifier that is

close to the " best " classifier lmore later)
.
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3.2 p = 1

Let’s (for now) assume we only have  predictor. We would like to obtain an estimate for 
 that we can plug into our formula to estimate . We will then classify an obser-

vation to the class for which  is greatest.

Suppose we assume that  is normal. In the one-dimensional setting, the normal den-
sity takes the form

Plugging this into our formula to estimate ,

We then assign an observation  to the class which makes  tthe largest. This is
equivalent to

Example 3.1 Let  and . When does the Bayes classi�er assign an observa-
tion to class ?

F- 1 .

assign t.es#FesQan.-
←-

class wl
↳
%;¥¥÷µ,

Pdx)
highest
-

is
called the

"

Bayes
da"
't"

"

tkbD=¥gexp[_÷( x -map]
and is known

to be
the

62 and µ,
variance and mean parameters for Kth class.

optimal
solution ,

i. e. we
can do

no better
! Let 's also (for how) assume GT= . . .

= 6,2 = 62 (shared variance term)
.

"
"" ÷÷÷÷÷÷÷÷⇒

" "

[
prior probability that an observation falls into lth class

.

Clay and
rearrange)

assign • Ss
.

to class for which

8,ix=x¥ -M + Ioylitk .

is largest .

-

when 8,64 > of Gil ?

⇐ x¥ - mi
1 T¢

+ Lotfi > "¥ - 1¥ +10M€
⇒ 2x(µ -ma > mi -ni
←→ x > Mitty decision boundary
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In practice, even if we are certain of our assumption that  is drawn from a Gaussian dis-
tribution within each class, we still have to estimate the parameters 

.

The linear discriminant analysis (LDA) method approximated the Bayes classi�er by plug-
ging estimates in for .

Sometimes we have knowledge of class membership probabilities  that can be
used directly. If we do not, LDA estimates  using the proportion of training observa-
tions that belong to the th class.

The LDA classi�er assignes an observation  to the class with the highest value of

Bayes
classifier .

- -

assign class I.
assign class 2 .

In this case,
example where 11-1--11-2=0,5

we know

µ2= -1,25 5-
←
Ga- N Lik , 67 .

µ
,

= 1,2s
} decision boundary at o

⇒ We can create the

6 = 1 Bayes classifier !

to estimate Bayes classifier !

-

-

Yu ,, =
1- Ex;

← average of training observations ihdassk .

nk i :yi=k

K

£2 = ¥ E E (sci -G)
2
←

weighted average of class variances .

E- I ii.Yi-k

n = total # training obs
.

y
from

" science
"
or

from the problem.

nk = # training obs
. 1h class K

II. = ¥

&lx)=xM÷ - ÷÷ + log ( ite) .
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##    pred 
## y       1     2 
##   1 18966  1034 
##   2  3855 16145

The LDA test error rate is approximately 12.22% while the Bayes classi�er error rate is
approximately 10.52%.

The LDA classi�er results from assuming that the observations within each class come
from a normal distribution with a class-speci�c mean vector and a common variance 
and plugging estimates for these parameters into the Bayes classi�er.

ngng.gg
histogram of randomly sampled points from class 1 and class 2

pre. plot.

[ E
Bayes

dashifer
decision bovrdwy

.

LDA decision

boundary
^

predicted rubes (based on data) . Ñ'+L
gowtrorg .

" confusion matrix
"

t
on many many simulated test points

(20k from each

true
@

got class) .
valves , right

The Bayes error rate is the best we can possibly do with this problem !

(we can only estimate it because this is a simulated example) .

The LDA approach did almost as well !

- - →
we will

relax this

assumption later.
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3.3 p > 1

We now extend the LDA classi�er to the case of multiple predictors. We will assume

Formally the multivariate Gaussian density is de�ned as

✗ = (X
, ,
- - , Xp) drawn from multivariate Gaussian dsn w/ class specific mean vector

-

E.
↳man"

covariance

↳ each component follows a Normal dsn and matrix.

Same covariance between components.

pxl
vector

f ← pxp
matrix

E[X1y=k]= Mk✗ |Y=k~Np(µ←, E)
Cov [XlY=k]= -2

←
transpose

£k(¥=u¥E exp f- { ( x-yytgggmatixi.mex-Mk))
T
"trace

"

= sum of diagonal elements of
E.

?⃝
"*"" " ""

"

Lou IX. ✗a) =L independence ⇒
couch ,-1%1=0

results in more
results in round/

"al ""} one shape.

If we marginalize
out ✗ ,

or ✗~

we get Normal dsn .

F- 2 Gaussian density w/ µ-(8) and 2 Is
.
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In the case of  predictors, the LDA classi�er assumes the observations in the th
class are drawn from a multivariate Gaussian distribution .

Plugging in the density function for the th class, results in a Bayes classi�er

Once again, we need to estimate the unknown parameters .

To classify a new value , LDA plugs in estimates into  and chooses the class
which maximized this value.

Let’s perform LDA on the Default data set to predict if an individual will default on
their CC payment based on balance and student status.

## Call: 
## lda(default ~ student + balance, data = Default) 
##  
## Prior probabilities of groups: 
##     No    Yes  
## 0.9667 0.0333  
##  
## Group means: 
##     studentYes   balance 
## No   0.2914037  803.9438 
## Yes  0.3813814 1747.8217 
##  
## Coefficients of linear discriminants: 
##                     LD1 
## studentYes -0.249059498 
## balance     0.002244397

library(MASS) # package containing lda function
lda_fit <- lda(default ~ student + balance, data = Default)
lda_fit

µ
common nuance

.

Class specific mean vector

assign an observation ✗ =>c to be class which maximizes

8,1×7 = xTÉµ+ - d-MIÉMkt logltk
T
this decision rule is finger in X .

Chena the name LDA)
.

use similar formulas as p -- l case.

⇒ get fax) choose class K
maximizes

this quantity
lie

. estimating
Bayes classifier).

-

←

#peñjust like em & gem .

← estimates of ITK based on class membership in

training data

average of each predictor within each class

used to estimate µ±

linear combinations of student &

balance used to form the LDA decision

boundary .
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##       
##         No  Yes 
##   No  9644  252 
##   Yes   23   81

Why does the LDA classi�er do such a poor job of classifying the customers who default?

##         
##           No  Yes 
##   FALSE 9432  138 
##   TRUE   235  195

# training data confusion matrix
table(predict(lda_fit)$class, Default$default)

table(predict(lda_fit)$posterior[, "Yes"] > 0.2, Default$default)

[
training or test

data y valve.

predict = →=
--

get LDA predictions of either training or test data
comparing

overall

predictions T.gg
""e-

training

q§-
got wrong

For individuals that did default,
er, , , rateto actual

rains .

I
only get 8£ I 24% right ! 72.75%

get right 811-252

Only 3.33% of individuals in training data defaulted!

A simple (but useless) classifier and justpredict default
-
- No and

got 3.33% overall training error !

LDA is trying to approximate the Bayes classifier ⇒ yields
smallest

possible overall error rate ( irrespective of which class errors come from ) .

A CC company may want to avoid misclassify.ly default = Yes people, so

usually

can adjust how to select classes
,

y
with 2 classes, wépiok

class w/ highest prob
⇒

pick class

prob
> 0,5 .

W

can adjust using a threshold,

but no longer approximating Bayes

classifier.

%ya?µ ,,
← do better for default -- Yes people ,%÷g right

worse
v1

default
-
-No

geode
. I

← default __Yes

← total
error

rates
.

←
so does total error.

as threshold 9
,
error ( default ⇒NO) &

error ( default = YES) 9
or ch

.
5

How to choose? Domain knowledge .
Or pick 0.5 b/c theoretical justification . street.
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3.4 QDA

LDA assumes that the observations within each class are drawn from a multivariate
Gaussian distribution with a class-speci�c mean vector and a common covariance matrix
across all  classes.

Quadratic Discriminant Analysis (QDA) also assumes the observations within each class
are drawn from a multivariate Gaussian distribution with a class-speci�c mean vector but
now each class has its own covariance matrix.

Under this assumption, the Bayes classi�er assignes observation  to class  for
whichever  maximizes

When would we prefer QDA over LDA?

=
-

an observation from Kth class

✗ N N (Mk
,
Sk)
☒ covariance matrix for Ktn class

9<1×1 = - E- lx -Maf Eid ↳c-mid - 1-2 log / SKI + log Ik
= - taxisix + xt sink - IMI Éµ, - Eloglad + log Tia .

t quadratic in 2C ⇒ "

quadratic discriminant analysis!
plug in

estimates

for Ey , Me , Tk
and

common choose argmax SKIN .

•variance
K

⇒ LDA similar

to Bayes
classifier

Edoesn't improve over LDA
because

more flexibility (more
variance)

terms

but didn't need .

different
Ek

⇒ QDA
similar to

Bayes
classifier

notflexible enough
when tree an p Predictors, estimating s, requires estimating PG+÷ parameters ⇒

K
parameters

LDA is linear in X ⇒ Kop parameters to estimate. Kan still gin good predictions) .

⇒ LDA mush less flexible than QDA
,
but 'tassumption of global variance is bad , LDA predictions can be wildly off
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4 KNN
Another method we can use to estimate  (and thus estimate the Bayes
classi�er) is through the use of -nearest neighbors.

The KNN classi�er �rst identi�es the  points in the training data that are closest to the
test data point , called .

Just as with regression tasks, the choice of  (neighborhood size) has a drastic effect on
the KNN classi�er obtained.

botlDATQDArfnotmanytoumhgossenatro-ns.net
Then we can estimate p(y=k|✗=x) as

1- EI(yi=k)
K it NCH

t
f- of points in neighborhood

overly
flexible
boundary
(overfilled

)

I
/

Best we can do !

less flexible

iii.ar !boundary

it
- choosing cored- level of flexibility is

critical to success for any
method (KatN

,

loyrstistic regression,

LDA Vs . QDA) .

µµatpaÑÑ - How to choose ? Ch . 5 ( coming up next !) .
" da¥

"

performing
.
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5 Comparison
LDA vs. Logistic Regression

(LDA & Logistic Regression) vs. KNN

QDA

✗
1-PGD .

LDA and logistic Regression are closely related .

Consider 1<=2
, p

=P and pith ,Pdx) are

prob. of obscenity ✗=x

belongs to class 1- ad 2

Logistic respectively .
Regression : 108 (,) = f. +p, k linear function of a

Titus.ly ME

log (¥,
) = log [¥÷e×pf¥{ lx-upa-lx-n.TNLDA : ~
= ¥-1, -¥1T - '⇒[# - Ices -1mi - xf-izxu-z-u.it- cot-4 "

- - linear function ofx

KNN non-parametric, no assumptions about | should get similar results between 2 methods .

LDA assumes Gaussian dsnwf common variance . and
shape of decision boundary .

\ logistic regression
does not. ⇒ whichever assumption holds

⇒ should outperform LDAÉ
.
logistic

regression if decision boundary is highly
shouldbebrttlrmethod.gg

nonlinear.

KNN does not tell us which parameters re important ( have relationships Y response) .

Compromise bctven KNN and LDA/logistic regression .

Quadratic decision boundary ⇒ can accurately model non linear decision
boundaries

wider range of problems ) .

Not as flexible as KNN⇒ for problems w/ less training data then WE need for

KNN can have improvement for tst predictions . .


