
Chapter 5: Assessing Model Accuracy
One of the key aims of this course is to introduce you to a wide range of statistical learn-
ing techniques. Why so many? Why not just the “best one”?

Hence, it’s important to decide for any given set of data which method produces the best
results.

https://xkcd.com/1838/

There is no Best one for every situation !

↳ unless you know the true model the data come from C.which you won't)

-

How to decide?

✓
not like this

!
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1 Measuring Quality of Fit
With linear regression we talked about some ways to measure �t of the model

In general, we need a way to measure �t and compare across models.

One way could be to measure how well its predictions match the observed data. In a re-
gression session, the most commonly used measure is the mean-squared error (MSE)

We don’t really care how well our methods work on the training data.

Instead, we are interested in the accuracy of the predictions that we obtain when we apply
our method to previously unseen data. Why?

Rh
, Residual standard error.

-

not just for linear regression

-

small it prediction
MSE= d-§

,

tyi - I trip are close tr true

4
← prediction for its obs

,

responses.

hesparse for
its obs

based on training data (used to fit the mode )⇒ " training MSE
"

-

want our model to make good predictions on data !

testator
we already know the responses for the training data !

Suppose we f-t our learning method on our training data { txriy . ) , . . . , txniyn )} and
obtain an estimate I .

We can compute Itn , . . .,Itxn) , if those are close to Yi , - -iyn ⇒ small training MSE

But we care about :

§ KD I Yo for Cxoiyo ) unseen data Not used to fit to model.

Want to choose the mode that gives lowest testMSE

Ave (yo - §GGP for a large A- of test observations Gcoiyol .
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So how do we select a method that minimizes the test MSE?

But what if we don’t have a test set available?

model df Test MSE Train MSE
Linear Regression 2 36.0399 4.9654
Smoothing Spline 6 40.2160 3.5441
Smoothing Spline 25 38.8952 1.8645

Sometimes we have a test data set available to us band on the scientific problem.

↳ access to set of observations that were not used to fit themodel.

Maybe just minimize training MSE?

Robley: there is no guarantee that lowering training MSE win lower testM$E!
because many

stat learning methods estimate coefs to lower training MSE
⇒ train MSE can be small but test MSE large!

generatedmodel
gldataomtnis
I

smoothly sphk

I ✓ W/ df-6

i(chit)

smoothly spline w/
df --25

way flexible linear regression

✓estimated using a large # of draws from
textE not used to fit model

leastflexible c- linear regression
has best

lest MSE!

d
most flexible ↳

best training MSE
"¥?+

test use
⇒ fits trainingdata the

best !

In general ,
How to choose model

?
•

rr testHSE

U-shape
Need to estimate test use !

Cnext) .

¥
train MSE

flexibility
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1.1 Classi�cation Setting

So far, we have talked about assessing model accuracy in the regression setting, but we
also need a way to assess the accuracy of classi�cation models.

Suppose we see to estimate  on the basis of training observations where now the re-
sponse is categorical. The most common approach for quantifying the accuracy is the
training error rate.

This is called the training error rate because it is based on the data that was used to train
the classi�er.

As with the regression setting, we are mode interested in error rates for data not in our
training data.

¥8mse

k

if Yi=Ñi1- £IEyi=Ñi ) where Ityi=Ñi) ← { to if yi=^yi (↳reallyi= '

y k
predicted classified)

.label for
label
for ith obs

ith obs

-

r

,
i. e. test data txoiyo.

Test error
= Ave (Ityo -1-90 ))rate

I
predicted class for test obs w/ predictor xo

A good classifier is one for which the test error rate is smalt .
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1.2 Bias-Variance Trade-off

The U-shape in the test MSE curve compared with �exibility is the result of two compet-
ing properties of statistical learning methods. It is possible to show that the expected test
MSE, for a given test value , can be decomposed

This tells us in order to minimize the expected test error, we need to select a statistical
learning method that siulatenously achieves low variance and low bias.

Variance – 

Bias – 

-

←
" irreducible error

"

average
test → E[Cryo -5-1*7 = Var ( th) + [Bias (fix.PT + Var (E)

MSE we
would

obtain if
he £0 zo

repeatedly estimates

at many trashing
data

sets and predict Yo overall expected test MSE obtained by averaging E[the- §⇒] one many test points txo,%)

-

f- -

the amount by which I would change if we estimated it using
different training data .

In general, more Flexible methods have higher variance

because they ft the
data so closely ⇒ new data means in big change in § .

the error that is introduced by approximating a real life problem by a much
simpler model .

ex . linear regression assumes a linear form
.

It is unlikely that any real -world problem
is actually linear ⇒ there will be some bites .

In general ,

9 flexibility ⇒
t bias & 9 variance

how much these change determines test Ms E

similar ideas hold for the classification setting and test error rate
.
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2 Cross-Validation
As we have seen, the test error can be easily calculated when there is a test data set
available.

In contrast, the training error can be easily calculated.

In the absense of a very large designated test set that can be used to estimate the test er-
ror rate, what to do?

For now we will assume we are in the regression setting (quantitative response), but con-
cepts are the same for classi�cation.

Unfortunately this is not usually the case
.

But training can wildly underestimate test error rate .

-

hold out some training data as test data ( smartly) .

↳ hopefully we have alot of data

maybe make more data that is similar to training data (but is direct)

↳ could be expensive .

↳ qualitative response
categorical .
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2.1 Validation Set

Suppose we would like to estimate the test error rate for a particular statistical learning
method on a set of observations. What is the easiest thing we can think to do?

Let’s do this using the mpg data set. Recall we found a non-linear relationship between
displ and hwy mpg.

We �t the model with a squared term , but we might be wondering if we can get
better predictive performance by including higher power terms!

We could randomly divide the available data into two parts : training
& validation .

original observations

to

fit model
on
her
→ IÉ← estimate test MSE

on these obs
.

0h "

training
validation

d-

disks ,
dispel

"
?
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terms model test_mse
2 linear 14.17119
3 quadratic 11.26710
4 cubic 11.08535
5 quartic 11.04907

## get index of training observations
# take 60% of observations as training and 40% for validation
n <- nrow(mpg)
trn <- seq_len(n) %in% sample(seq_len(n), round(0.6*n)) 

## fit models
m0 <- lm(hwy ~ displ, data = mpg[trn, ])
m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

## predict on validation set
pred0 <- predict(m0, mpg[!trn, ])
pred1 <- predict(m1, mpg[!trn, ])
pred2 <- predict(m2, mpg[!trn, ])
pred3 <- predict(m3, mpg[!trn, ])

## estimate test MSE
true_hwy <-  mpg[!trn, ]$hwy # truth vector

data.frame(terms = 2, model = "linear", true = true_hwy, pred = 
pred0) %>%

  bind_rows(data.frame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

  bind_rows(data.frame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

  bind_rows(data.frame(terms = 5, model = "quartic", true = true_hwy, 
pred = pred3)) %>% ## bind predictions together

  mutate(se = (true - pred)^2) %>% # squared errors
  group_by(terms, model) %>% # group by model
  summarise(test_mse = mean(se)) %>% ## get test mse
  kable() ## pretty table

← data

randomly generate indices
1-intraining 60% of obs .

I :n
a logical vector of length n indicating membership in 1-rainy set .

← training data

increasingflexibility indexes
validation
set .

•

also looking good .

← looks like

best moder?
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Repeated process 10 times

a lot of

0 variability
here !

8

Sometimes

the squared
model

is the best

9

- the validation estimate of test MSE is highly variable ! Depends on
which

observations were held out !

- only a subset used to fit model
.
Since statistical models tend to do better

with more data
,
the validation set error canEe the test error.

⇒ cross - validation is a
method to address these weaknesses . . .
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2.2 Leave-One-Out Cross Validation

Leave-one-out cross-validation (LOOCV) is closely related to the validation set approach,
but it attempts to address the method’s drawbacks.

The LOOCV estimate for the test MSE is

LOOCV has a couple major advantages and a few disadvantages.

100 Cv still splits data into 2 parts, but now
a single obs . is used for validation

.

observations
① fit model on n - l observations

ÑÉ?- ② Yi prediction for heldout obs .

MSE , = (yi - zig;)
2 unbiased
for testerror

but highly
¥ainiy variable!

validation

(Vin,
=

1- ÉMSEI = d- Élyi - ji )
'

n
it in

cover the validation method)
.

Advantages
- less bias

since we fit using h-1 obs ( instead of 2 ÷ for validation approach)

⇒ Loo cv doesn't
overestimate test error as much as validation approach .

- No randomness in the approach ⇒ will get the same result every time .

Disadvantages
- sometimes stat learning can

be expensive to fit [i.e. on the order of days)

Loo Cv requires us to fit the
model n times

⇒ could be slow !



2.2 Leave-One-Out Cross Valida… 11

terms model LOOCV_test_MSE
2 linear 14.92437
3 quadratic 11.91775
4 cubic 11.78047
5 quartic 11.93978

## perform LOOCV on the mpg dataset
res <- data.frame() ## store results
for(i in seq_len(n)) { # repeat for each observation
  trn <- seq_len(n) != i # leave one out

  ## fit models
  m0 <- lm(hwy ~ displ, data = mpg[trn, ])
  m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
  m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
  m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

  
  ## predict on validation set
  pred0 <- predict(m0, mpg[!trn, ])
  pred1 <- predict(m1, mpg[!trn, ])
  pred2 <- predict(m2, mpg[!trn, ])
  pred3 <- predict(m3, mpg[!trn, ])
  
  ## estimate test MSE
  true_hwy <- mpg[!trn, ]$hwy # get truth vector
  
  res %>% ## store results for use outside the loop
    bind_rows(data.frame(terms = 2, model = "linear", true = 
true_hwy, pred = pred0)) %>%

    bind_rows(data.frame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

    bind_rows(data.frame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

    bind_rows(data.frame(terms = 5, model = "quartic", true = 
true_hwy, pred = pred3)) %>% ## bind predictions together

    mutate(mse = (true - pred)^2) -> res
}

res %>%
  group_by(terms, model) %>%
  summarise(LOOCV_test_MSE = mean(mse)) %>%
  kable()

let's fit models of increasing flexibility to hwy ~ displ on mpg .

vector of TIF indicating which obs to leave out i=L
,
.
. . in

9
Msti

←
cvcn,

= ÷ §
,

MSE;

we would choose

cubic model

level of flexibility v1

lowest cvcn, estimate of test MSE
.
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2.3 k-Fold Cross Validation

An alternative to LOOCV is -fold CV.

The -fold CV estimate is computed by averaging

Why -fold over LOOCV?

-

→
randomly

divide th
set of

observations into
K groups

or fotds

observation ① hold out 1- fold

fit model on remaining K- I☒76s---fÉ# folds .

Validation

Compute Ms Ei for left out

fold.,,,,Éµ
"" ② """ "" """

'

,

training

training

even = IT ÉMSE ,
- = :-< IE ,¥¥Yi

- Iit
in

fold I

usually use 1<=5 or 1<=10 .
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## perform k-fold on the mpg dataset
res <- data.frame() ## store results

## get the folds
k <- 10
folds <- sample(seq_len(10), n, replace = TRUE) ## approximately 
equal sized

for(i in seq_len(k)) { # repeat for each observation
  trn <- folds != i # leave ith fold out

  ## fit models
  m0 <- lm(hwy ~ displ, data = mpg[trn, ])
  m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
  m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
  m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

  
  ## predict on validation set
  pred0 <- predict(m0, mpg[!trn, ])
  pred1 <- predict(m1, mpg[!trn, ])
  pred2 <- predict(m2, mpg[!trn, ])
  pred3 <- predict(m3, mpg[!trn, ])
  
  ## estimate test MSE
  true_hwy <- mpg[!trn, ]$hwy # get truth vector
  
  data.frame(terms = 2, model = "linear", true = true_hwy, pred = 
pred0) %>%

    bind_rows(data.frame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

    bind_rows(data.frame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

    bind_rows(data.frame(terms = 5, model = "quartic", true = 
true_hwy, pred = pred3)) %>% ## bind predictions together

    mutate(mse = (true - pred)^2) %>%
    group_by(terms, model) %>%
    summarise(mse = mean(mse)) -> test_mse_k
  
  res %>% bind_rows(test_mse_k) -> res
}
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terms model kfoldCV_test_MSE
2 linear 14.77098
3 quadratic 12.14423
4 cubic 11.94037
5 quartic 11.78830

res %>%
  group_by(terms, model) %>%
  summarise(kfoldCV_test_MSE = mean(mse)) %>%
  kable()
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2.4 Bias-Variance Trade-off for -Fold Cross Validation

-Fold CV with  has a computational advantace to LOOCV.

We know the validation approach can overestimate the test error because we use only half
of the data to �t the statistical learning method.

But we know that bias is only half the story! We also need to consider the procedure’s
variance.

To summarise, there is a bias-variance trade-off associated with the choice of  in -fold
CV. Typically we use  or  because these have been shown empirically to yield
test error rates closest to the truth.
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2.5 Cross-Validation for Classi�cation Problems

So far we have talked only about CV for regression problems.

But CV can also be very useful for classi�cation problems! For example, the LOOCV error
rate for classi�cation problems takes the form
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Minimum CV error of 0.2135 found at .

k_fold <- 10
cv_label <- sample(seq_len(k_fold), nrow(train), replace = TRUE)
err <- rep(NA, k) # store errors for each flexibility level

for(k in seq(1, 100, by = 2)) {
  err_cv <- rep(NA, k_fold) # store error rates for each fold
  for(ell in seq_len(k_fold)) {
    trn_vec <- cv_label != ell # fit model on these
    tst_vec <- cv_label == ell # estimate error on these
    
    ## fit knn
    knn_fit <- knn(train[trn_vec, -1], train[tst_vec, -1], 
train[trn_vec, ]$class, k = k)

    ## error rate
    err_cv[ell] <- mean(knn_fit != train[tst_vec, ]$class)
  }
  err[k] <- mean(err_cv)
}
err <- na.omit(err)


