
Chapter 5: Assessing Model Accuracy
One of the key aims of this course is to introduce you to a wide range of statistical learn-
ing techniques. Why so many? Why not just the “best one”?

Hence, it’s important to decide for any given set of data which method produces the best
results.

https://xkcd.com/1838/
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1 Measuring Quality of Fit
With linear regression we talked about some ways to measure �t of the model

In general, we need a way to measure �t and compare across models.

One way could be to measure how well its predictions match the observed data. In a re-
gression session, the most commonly used measure is the mean-squared error (MSE)

We don’t really care how well our methods work on the training data.

Instead, we are interested in the accuracy of the predictions that we obtain when we apply
our method to previously unseen data. Why?
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So how do we select a method that minimizes the test MSE?

But what if we don’t have a test set available?

model df Test MSE Train MSE
Linear Regression 2 36.0399 4.9654
Smoothing Spline 6 40.2160 3.5441
Smoothing Spline 25 38.8952 1.8645
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1.1 Classi�cation Setting

So far, we have talked about assessing model accuracy in the regression setting, but we
also need a way to assess the accuracy of classi�cation models.

Suppose we see to estimate  on the basis of training observations where now the re-
sponse is categorical. The most common approach for quantifying the accuracy is the
training error rate.

This is called the training error rate because it is based on the data that was used to train
the classi�er.

As with the regression setting, we are mode interested in error rates for data not in our
training data.

f
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1.2 Bias-Variance Trade-off

The U-shape in the test MSE curve compared with �exibility is the result of two compet-
ing properties of statistical learning methods. It is possible to show that the expected test
MSE, for a given test value , can be decomposed

This tells us in order to minimize the expected test error, we need to select a statistical
learning method that siulatenously achieves low variance and low bias.

Variance – 

Bias – 

x0
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2 Cross-Validation
As we have seen, the test error can be easily calculated when there is a test data set
available.

In contrast, the training error can be easily calculated.

In the absense of a very large designated test set that can be used to estimate the test er-
ror rate, what to do?

For now we will assume we are in the regression setting (quantitative response), but con-
cepts are the same for classi�cation.
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2.1 Validation Set

Suppose we would like to estimate the test error rate for a particular statistical learning
method on a set of observations. What is the easiest thing we can think to do?

Let’s do this using the mpg data set. Recall we found a non-linear relationship between
displ and hwy mpg.

We �t the model with a squared term , but we might be wondering if we can get
better predictive performance by including higher power terms!

displ2
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terms model test_mse
2 linear 14.17119
3 quadratic 11.26710
4 cubic 11.08535
5 quartic 11.04907

## get index of training observations
# take 60% of observations as training and 40% for validation
n <- nrow(mpg)
trn <- seq_len(n) %in% sample(seq_len(n), round(0.6*n)) 

## fit models
m0 <- lm(hwy ~ displ, data = mpg[trn, ])
m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

## predict on validation set
pred0 <- predict(m0, mpg[!trn, ])
pred1 <- predict(m1, mpg[!trn, ])
pred2 <- predict(m2, mpg[!trn, ])
pred3 <- predict(m3, mpg[!trn, ])

## estimate test MSE
true_hwy <-  mpg[!trn, ]$hwy # truth vector

data.frame(terms = 2, model = "linear", true = true_hwy, pred = 
pred0) %>%

  bind_rows(data.frame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

  bind_rows(data.frame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

  bind_rows(data.frame(terms = 5, model = "quartic", true = true_hwy, 
pred = pred3)) %>% ## bind predictions together

  mutate(se = (true - pred)^2) %>% # squared errors
  group_by(terms, model) %>% # group by model
  summarise(test_mse = mean(se)) %>% ## get test mse
  kable() ## pretty table
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2.2 Leave-One-Out Cross Validation

Leave-one-out cross-validation (LOOCV) is closely related to the validation set approach,
but it attempts to address the method’s drawbacks.

The LOOCV estimate for the test MSE is

LOOCV has a couple major advantages and a few disadvantages.
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terms model LOOCV_test_MSE
2 linear 14.92437
3 quadratic 11.91775
4 cubic 11.78047
5 quartic 11.93978

## perform LOOCV on the mpg dataset
res <- data.frame() ## store results
for(i in seq_len(n)) { # repeat for each observation
  trn <- seq_len(n) != i # leave one out

  ## fit models
  m0 <- lm(hwy ~ displ, data = mpg[trn, ])
  m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
  m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
  m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

  
  ## predict on validation set
  pred0 <- predict(m0, mpg[!trn, ])
  pred1 <- predict(m1, mpg[!trn, ])
  pred2 <- predict(m2, mpg[!trn, ])
  pred3 <- predict(m3, mpg[!trn, ])
  
  ## estimate test MSE
  true_hwy <- mpg[!trn, ]$hwy # get truth vector
  
  res %>% ## store results for use outside the loop
    bind_rows(data.frame(terms = 2, model = "linear", true = 
true_hwy, pred = pred0)) %>%

    bind_rows(data.frame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

    bind_rows(data.frame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

    bind_rows(data.frame(terms = 5, model = "quartic", true = 
true_hwy, pred = pred3)) %>% ## bind predictions together

    mutate(mse = (true - pred)^2) -> res
}

res %>%
  group_by(terms, model) %>%
  summarise(LOOCV_test_MSE = mean(mse)) %>%
  kable()
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2.3 k-Fold Cross Validation

An alternative to LOOCV is -fold CV.

The -fold CV estimate is computed by averaging

Why -fold over LOOCV?

k

k

k
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## perform k-fold on the mpg dataset
res <- data.frame() ## store results

## get the folds
k <- 10
folds <- sample(seq_len(10), n, replace = TRUE) ## approximately 
equal sized

for(i in seq_len(k)) { # repeat for each observation
  trn <- folds != i # leave ith fold out

  ## fit models
  m0 <- lm(hwy ~ displ, data = mpg[trn, ])
  m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
  m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
  m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

  
  ## predict on validation set
  pred0 <- predict(m0, mpg[!trn, ])
  pred1 <- predict(m1, mpg[!trn, ])
  pred2 <- predict(m2, mpg[!trn, ])
  pred3 <- predict(m3, mpg[!trn, ])
  
  ## estimate test MSE
  true_hwy <- mpg[!trn, ]$hwy # get truth vector
  
  data.frame(terms = 2, model = "linear", true = true_hwy, pred = 
pred0) %>%

    bind_rows(data.frame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

    bind_rows(data.frame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

    bind_rows(data.frame(terms = 5, model = "quartic", true = 
true_hwy, pred = pred3)) %>% ## bind predictions together

    mutate(mse = (true - pred)^2) %>%
    group_by(terms, model) %>%
    summarise(mse = mean(mse)) -> test_mse_k
  
  res %>% bind_rows(test_mse_k) -> res
}
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terms model kfoldCV_test_MSE
2 linear 14.77098
3 quadratic 12.14423
4 cubic 11.94037
5 quartic 11.78830

res %>%
  group_by(terms, model) %>%
  summarise(kfoldCV_test_MSE = mean(mse)) %>%
  kable()
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2.4 Bias-Variance Trade-off for -Fold Cross Validation

-Fold CV with  has a computational advantace to LOOCV.

We know the validation approach can overestimate the test error because we use only half
of the data to �t the statistical learning method.

But we know that bias is only half the story! We also need to consider the procedure’s
variance.

To summarise, there is a bias-variance trade-off associated with the choice of  in -fold
CV. Typically we use  or  because these have been shown empirically to yield
test error rates closest to the truth.

k

k k < n

k k

k = 5 k = 10
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2.5 Cross-Validation for Classi�cation Problems

So far we have talked only about CV for regression problems.

But CV can also be very useful for classi�cation problems! For example, the LOOCV error
rate for classi�cation problems takes the form
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Minimum CV error of 0.2135 found at .

k_fold <- 10
cv_label <- sample(seq_len(k_fold), nrow(train), replace = TRUE)
err <- rep(NA, k) # store errors for each flexibility level

for(k in seq(1, 100, by = 2)) {
  err_cv <- rep(NA, k_fold) # store error rates for each fold
  for(ell in seq_len(k_fold)) {
    trn_vec <- cv_label != ell # fit model on these
    tst_vec <- cv_label == ell # estimate error on these
    
    ## fit knn
    knn_fit <- knn(train[trn_vec, -1], train[tst_vec, -1], 
train[trn_vec, ]$class, k = k)

    ## error rate
    err_cv[ell] <- mean(knn_fit != train[tst_vec, ]$class)
  }
  err[k] <- mean(err_cv)
}
err <- na.omit(err)

K = 7


