Chapter 6: Linear Model Selection &
Regularization
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In the regression setting, the standard linear model is commonly used to describe the rela-
regression setting
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The linear model has distinct advantages in terms of inference and is often surprisingly

competitive for prediction. How can it be improved?
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We can yield both better prediction accuracy and model interpretability:
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1 Subset Selection

We consider methods for selecting subsets of predictors.

1.1 Best Subset Selecton

To perform best subset selection, we fit a separate least squares regression for each possi-
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We can perform something similar with logistic regression. F H""af 2F molls pelo =2 1":’22 s
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1.2 Stepwise Selection
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For computational reasons, best subset selection cannot be performed for very large p. brp> ‘
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_Stepwise selection is a computationally efficient procedure that considers a much smaller
subset of models.
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1.3 Choosing the Optimal Model 3
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~% Neither forward nor backwards stepwise selection are guaranteed to find the best model
containing a subset of the p predictors.
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2 Shrinkage Methods

The subset selection methods involve using least squares to fit a linear model that contains
a subset of the predictors. As an alternative, we can fit a model with all p predictors using
a technique that constrains (regularizes) the estimates.

Shrinking the coefficient estimates can significantly reduce their variance!

2.1 Ridge Regression

Recall that the least squares fitting procedure estimates S, . .., Bp using values that
minimize

Ridge Regression is similar to least squares, except that the coefficients are estimated by
minimizing

The tuning parameter A serves to control the impact on the regression parameters.



2.1 Ridge Regression 5

The standard least squares coefficient estimates are scale invariant.
AR
In contrast, the ridge regression coefficients 8, can change substantially when multiplying

a given predictor by a constant.

Therefore, it is best to apply ridge regression after standardizing the predictors so that
they are on the same scale:
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Why does ridge regression work?



2.2 The Lasso

2.2 The Lasso

Ridge regression does have one obvious disadvantage.

This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when p is very large.

N
The lasso is an alternative that overcomes this disadvantage. The lasso coefficients 3,
minimize

As with ridge regression, the lasso shrinks the coefficient estimates towards zero.

As a result, lasso models are generally easier to interpret.



8 2 Shrinkage Methods

Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not? One can show that the lasso and ridge regression coefficient estimates solve the
following problems

In other words, when we perform the lasso we are trying to find the set of coefficient esti-
mates that lead to the smalled RSS, subject to the contraint that there is a budget s for

how large Z§:1 |B;| can be.



2.3 Tuning

2.3 Tuning

We still need a mechanism by which we can determine which of the models under consid-
eration is “best”.

For both the lasso and ridge regression, we need to select A (or the budget s).

How?



