
Chapter 6: Linear Model Selection &
Regularization
In the regression setting, the standard linear model is commonly used to describe the rela-
tionship between a response  and a set of variables .

The linear model has distinct advantages in terms of inference and is often surprisingly
competitive for prediction. How can it be improved?

We can yield both better prediction accuracy and model interpretability:

Y = Po + P, X , t . . - + Pp Xp + E

typically fit model using
least squares .

T
we will talk about ( later will go

non-linear)
.other ways he could approach this

fitting problem .

-

-

replace least squares with alternative fitting procedures .

- -

- predictionacuray : If true relationship is I linear , least squares will have lowbias .
- If n >> p ⇒ also low variance ⇒ perform well on test data !

- But n not much larger than p ⇒ high variability ⇒ poor performance on test data .

- If n < p
⇒ no longer have unique solution ⇒ variance = • ⇒ cannot use this atoll !

good : reduce variance
without adding too much bias.

-modelinterpret-ab.biz : often many variables used
in regression - are not in fact associated w/ response .

By removing
them ( setting ^pi=o? we can obtain a more interpretable model.

Note : Least squares will hardly ever result in § .- = o.

goat : need⇒ritm .

Same ideas apply to logistic regression .
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1 Subset Selection
We consider methods for selecting subsets of predictors.

1.1 Best Subset

To perform best subset selection, we �t a separate least squares regression for each possi-
ble combination of the  predictors.

Algorithm:

We can perform something similar with logistic regression.

1.2 Stepwise Selection

For computational reasons, best subset selection cannot be performed for very large .

Stepwise selection is a computationally ef�cient procedure that considers a much smaller
subset of models.

Forward Stepwise Selection:

-

Selection

ÉMIGRÉactors in model (K).

he bit µo denote null model - no predictors.

2. for K =L , - -, p

(a) Fit all 1k) models that contain K predictors.

(b) Pick the best of those call it µk .
"Best

"

defined by d Rss
,
9122

3. Select a single best model from Mo ,µ , , . . ,µp using
CV error

, cp.tk/Blc,oradiustedR2-m.re
later.

We can't use Ñ for step 3 .
" H "^^"""

why might we not
want to do this procedureatall ?

Fitting 2 models !
p
-

- to ⇒ 1000

nodes .

impossible
→ for p 740

Best subset also suffers when p is large because w/ large search space
we can find good models on trashing data that perform poorly on test data

.

high variability & overfitting of hoeeffs can occur
.

-

start w/ no predictors and add predictors one ata time until all predictors
are in the model . Choose the

"best
" from these.

I. let Mo denote the null model - no predictors.

2. For 1<=0
,
.
- , p

- I

(a) consider
all

p
- k models that augment predictors in Mk w/ 1- additional predictor

.

(b) . Choose the best among p
-k and call it µk+ , ( TR)

& Rss

3
.
Select a single best model from Mo , - . - , Mp using CV error

, Cp , Atc / BIC, or adjusted R?

Now we are fitting It Élp - K) = f- 1- P(Pz models !
K-O
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Backward Stepwise Selection:

Neither forward nor backwards stepwise selection are guaranteed to �nd the best model
containing a subset of the  predictors.

1.3 Choosing the Optimal Model

 

AIC & BIC 

Adjusted  

Validation and Cross-Validation

Begin w/ full model and take predictors away one at a time until

we get to null model .
1. lit up denote the full model - all p predictors

2 .
K =p , p

- 1
,

-
-
.
-

,
1 :

(a) Consider all K models that contain all but one of
te predictors

inMK ( K- I predicted.

(b) Choose best among
them and call it µ, -, ( 9Ñ ,

dRss ) .

3 . Select style best model using CV error
,
etc

.

*

when p>n : forward selection can be used (but only up to n - l predictors ,
not p) .

Best 5:bset , forward , backward select all need to pick " best " model - according to test error
.

RSS t R2 are proxies for training error ⇒ not good estimates of test error . -
①estimate this chnety

e- ② adjust training for model size
.

② = In (Rss + 2dm
9 ← estimate of variance of E full model

# predictors
1h subset model

add penalty to training error (Rss) to adjust for
underestimation of test error

as d9
, Cpt

② Choose model w/µ ,.. maximum www., µ, , , , ,, ,,, , ya, ,gum, ,
west BIC

Alc : ¥1 Rss + 2d E)proportional
→ same
answer 131C = ¥ (Rsstloglnd F)

②
since for n > 7--7 log (n) > 2 ⇒ BIC is heavier penalty for adding variables⇒ results in smaller

models
.

( least squares models)

pi = I - f÷ away or as di

Adjei = I - f¥Y¥ Choose model 4 highest Adj R?

-
④
- Directly estimate test error of validation or CV ad choose modelY lowest estimated error .

• Very general I can be used w/ any model ) even when it's not clear how many
"

predictors
"

are in the model .

Now we have fast computers ⇒
CV is preferred .
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2 Shrinkage Methods
The subset selection methods involve using least squares to �t a linear model that contains
a subset of the predictors. As an alternative, we can �t a model with all  predictors using
a technique that constrains (regularizes) the estimates.

Shrinking the coef�cient estimates can signi�cantly reduce their variance!

2.1 Ridge Regression

Recall that the least squares �tting procedure estimates  using values that
minimize

Ridge Regression is similar to least squares, except that the coef�cients are estimated by
minimizing

The tuning parameter  serves to control the impact on the regression parameters.

-

-

↳ shrink towards zero

Épaidw

p

" residual Rs s = É (Yi - Po - [ pixii)
"

sum of i= , j= ,

squares
"

§R

note we do not penalize fo
✓ we want to penalize relationships

p

É(Yi - Po - E pjxij)'t 7Ép? = pg , +[g§,?⃝
not the intercept I mean response
when Xi, F- - -

-

=

Hip
= 0 )

i -- i j= ,
j -4

720
"

how much to penalize magnitude of wefs
"

tuning parameter ( determined separately
from

fitting procedure) .

trades off 2 criteria : minimize Rss to fit data well

7¥.PT shrinkage penalty small when pj close to zero
⇒ shrinks estimates

towards zero.

-

when 7=0 penalty has no effect and ridge regression = least squares .

As 7 → no
, impact of penalty grows BR→ o

Ridge regression will produce
a different set of coefficients for each penalty [ §!)

selecting a good 7 is critical ! How to
choose ? CV

.
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The standard least squares coef�cient estimates are scale invariant.

In contrast, the ridge regression coef�cients  can change substantially when multiplying
a given predictor by a constant.

Therefore, it is best to apply ridge regression after standardizing the predictors so that
they are on the same scale:

Multiply Xj by a constant c leads to a scaling of least squares wef by a factor of Yo .

⇒ regardless of how jth predictor is scaled , ✗; Jj will remain the same.

-

e.g. say we have
an income variable in ① dollars and ② thousands of dollars .

④ = 1000 ✗②

due to the sum of squared wef term , this charge doesnot simply result in the

coefficient estimate to change by a factor of 1000.
^

R
⇒ ✗ jpj , depends not only on ✗ but also on the scaling of Xj

( may even depend on scaling of other predictors ! ) .

before - -i- e. standard deviation of one .

Ii;=÷¥¥E⇒
near

St . der
. of jth predictor

.

① standardize data

④ tune model to choose 7 C w/ Cu)

② fit ridge regression w/ chosen
7
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Why does ridge regression work?

Because of the bias - variance trade-off !

As 79 : the flexibility of the ridge regression fit &

⇒ b variance

and 9 bias . mgg = bias
- + variance

.

^\*¥×T
> bias
'

☒
variance .

k

In situations where relationship between aspens
and predictors I linear.

least squares will have low
bias in its estimates

when
p almost as large as n → least sqvres has variability !

§ If
p
> n least squares doesn't have a

solution !

ridge regression can still perform well
in these scenarios by trading off a small amount of

bias for a decrease in variance .

⇒ ridge regression works best in high variance scenarios .

Also -

St advantage of ridge regression over subset selection

b/c for a fixed 7 , only filling ore model ! ( very fast model to fit).

Ridge regression improves predictive performance .

Does it also help us with interpretation? No !
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2.2 The Lasso

Ridge regression does have one obvious disadvantage.

This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when  is very large.

The lasso is an alternative that overcomes this disadvantage. The lasso coef�cients 
minimize

As with ridge regression, the lasso shrinks the coef�cient estimates towards zero.

As a result, lasso models are generally easier to interpret.

Unlike best subset, forward and backward selection ridge regression will include all p variables
in

finial model.

penalty 7-Ef? will shrink all B-→0 but p;-1-0
(unless 7- =D

.

-

-

We will always have all variables in model , whether there is a true relationship w/ Y or not!
11Least
ajsolute -

shrinkage
and

-

selection
,
✗

"Pill , A nom

'

operator
"

p p

Éfyi - Po - Epix.;)
'
+ ✗ Elpil = Rss + >E. 1 Pil

i=i 5=1 j= , ~
"

l , penalty
"

ÉP? = "e
,
nom

"

i - i

-

l
, penalty also

has the effect of forcing some coefficients to be exactly zero

[
" " " """" "" "

⇒ much like best subset selection , lasso performs variable selection !

-

The lasso yields spwsemo - models w/ only a subset of variables .

Again , selecting
a good 7 is critical ! ( using Cu) .
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Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not? One can show that the lasso and ridge regression coef�cient estimates solve the
following problems

In other words, when we perform the lasso we are trying to �nd the set of coef�cient esti-
mates that lead to the smalled RSS, subject to the contraint that there is a budget  for
how large  can be.

p

lasso : minimize { §
.
,tyi - po - Ép;xi;)

'] subject ¥1 B- 1<-5 ]
constrained

j=, optimization
⇒ p problems .

equivalent to pigde : minimize { I lyi - Po - { pjxi;)
'] subject to ÉP? Is

previous
i -- i j= ,

j =\

formulation

-

st
-

-

When g is very large ,
this is not much of a constraint ⇒ coef estimates can be

large . ( similar for ridge regression ) .

contours of Rss

let
p
--2

.
( regions of

constant

valve ).

"" """"""""""
""

""

0
the solution to rigde regression is the point of intersect'm between the constrained circle ad the contour ellipses.

lasso
constrained diamond

since ridge has a circular constraint w/ ro sharp points the intersection is generally not on the axis .

lasso has corners on axes ⇒ ellipse often intersect at the axis ⇒ one or more of coefficient
will equal zero.



if we believe there are predictors that do with Y (we just

don't know which ones )
,

lasso • will perform better ( bias & variance) .

If wot I everything is important, ridge regression will perform better.
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2.3 Tuning

We still need a mechanism by which we can determine which of the models under consid-
eration is “best”.

For both the lasso and ridge regression, we need to select  (or the budget ).

How?

For subset we used Cp , Atc/ Bk, adjusted R? CV error
.

equivalently .

penalization
parameter

⑧ Scale predictors to
have A. der . = 1

.

① choose a grid of 7 values
.

if i
haven't

② Compute CV error

←
↳our o- k-fold.

for each 7 .

tick a Bigger
grid

and start
over.

③ Select 7 for which cu era ,, g.make , ,
# picked big evil

" "
"d
'

\ /

/
"
"

④ refit model using all available observations and selected 7. was:* - -

☒i÷i→

* Note : still important to scale variables. X . ,
.
.

> xp fr lasso to have st
.
der --1

.


