3 Dimension Reduction Methods

So far we have controlled variance in two ways:
(1) Used a subset of original variables

- best sublet, forward/buckwand selection, lasso
(2) Shrinking coefficients towards zero
- ridge regression, lasso.

These methods all defined using original predictor variables x_{1}, \ldots, x_{p}.
We now explore a class of approaches that
(1) transform the predictors
(2) then perform least squares using transformed variables.

We refer to these techniques as dimension reduction methods.
(1) Let Z_{1}, \ldots, Z_{M} represent $M<\rho$ linear combinations of our original predictors.

$$
z_{m}=\sum_{j=1}^{p} \phi_{j m} x_{j}
$$

for constants $\phi_{1 m}, \ldots, \phi_{p m} \quad m=1, \ldots, M$
(2) Fit the linear regression model using least squares

$$
y_{i}=\theta_{0}+\sum_{m=1}^{M} \theta_{m} z_{i n}+\varepsilon_{i} \quad i=1, \ldots, n
$$

regression coefficients.

If $\left\{\oint_{j m}\right\} \underset{\substack{j \\ j=1, \ldots, M}}{j}$ chosen well, this's can out perform least squares.

The term dimension reduction comes from the fact that this approach reduces the problem of estimating $p+1$ coefficients to the problem of estimating $M+1$ coefficients where $M<p$.

$$
\uparrow_{\beta_{0}, \beta_{1}, \ldots, \beta_{p}} \quad \theta_{0}, \theta_{1} \ldots, \theta_{M}
$$

$$
\beta_{0}, \beta_{1}, \ldots, \beta_{p}
$$

NotE:

$$
\begin{aligned}
\sum_{m=1}^{M} \theta_{m} z_{i m}=\sum_{m=1}^{M} \theta_{m}\left[\sum_{j=1}^{p} \phi_{j m} x_{i j}\right] & =\sum_{j=1}^{p}\left[\sum_{m=1}^{M} \theta_{m} \phi_{j m}^{p}\right] \\
& =\sum_{j=1}^{p} \beta_{j} x_{i j}
\end{aligned}
$$

Dimension reduction serves to constrain β_{j}, since now they must take a particular form.

$$
\beta_{j}=\sum_{m=1}^{M} \theta_{m} \phi_{j m}
$$

\Rightarrow special case of original linear regression problem (with β_{j} constrained) \rightarrow it can bias coefficient estimate
\longrightarrow if $\rho>n\left(\rho_{\rho}^{\circ} \approx n\right)$ selecting $M \ll \rho$
All dimension reduction methods work in two steps.

(2) Model is fit using M transform red predictors from

We will tall about 2 .

$$
\begin{aligned}
& \begin{array}{l}
\text { least } \\
\text { savors have to come from } \\
\text { somewhere else (hope fully weave } \\
\text { picked well) }
\end{array} \\
& \text { pisces well). }
\end{aligned}
$$

3.1 Principle Component Regression

Principal Components Analysis ($P C A$) is a popular approach for deriving a low-dimensional set of features from a large set of variables.

The first principal component directions of the data is that along which the obervations vary the most.

We can construct up to p principal components, where the 2 nd principal component is a linear combination of the variables that are uncorrelated to the first principal component and has the largest variance subject to this constraint.

The Principal Components Regression approach (PCR) involves
1.
2.

Key idea:

In other words, we assume that the directions in which X_{1}, \ldots, X_{p} show the most variation are the directions that are associated with Y.

How to choose M, the number of components?

Note: PCR is not feature selection!

3.2 Partial Least Squares

The PCR approach involved identifying linear combinations that best represent the predictors X_{1}, \ldots, X_{p}.

Consequently, PCR suffers from a drawback

Alternatively, partial least squares ($P L S$) is a supervised version.

Roughly speaking, the PLS approach attempts to find directions that help explain both the reponse and the predictors.

The first PLS direction is computed,

To identify the second PLS direction,

As with PCR, the number of partial least squares directions is chosen as a tuning parameter.

4 Considerations in High Dimensions

Most traditional statistical techniques for regression and classification are intendend for the low-dimensional setting.

In the past 25 years, new technologies have changed the way that data are collected in many fields. It is not commonplace to collect an almost unlimited number of feature measurements.

Data sets containing more features than observations are often referred to as high-dimensional.

What can go wrong in high dimensions?

Many of the methds that we've seen for fitting less flexible models work well in the highdimension setting.
1.
2.
3.

When we perform the lasso, ridge regression, or other regression procedures in the highdimensional setting, we must be careful how we report our results.

