3 Dimension Reduction Methods

So far we have controlled variance in two ways:
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We now explore a class of approaches that
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We refer to these techniques as dimension reduction methods.

@ L"/+ 21, 2M "f—presfwf M<p Lhntar COMLIP/lm‘ﬂbns of our orz‘gl‘wf pme&b{ws.

.P
2,7 2 ¢Qm %

i

doe  Canstints ?ﬁm,---)}ém m=1,.,M

@ e g bl sy s

M \
fla., = -90+ i‘g;ﬂ‘::l‘m nrz‘r l:"r—-'ﬂ
m=\
R /

Nf}rt%{rm coelicients,

L@ 2(}5&\):(,? chojen welk, A's me | cast fqueres. 00
Jm e



2.3 Tuning 11

The term dimension reduction comes from the fact that this approach reduces the problem
of estimating p 4+ 1 coefficients to the problem of estimating M + 1 coefficients where

M < p. * 8600,
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All dimension reduction methods work in two steps.
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12 3 Dimension Reduction Methods

3.1 Principle Component Regression

Principal Components Analysis (PCA) is a popular approach for deriving a low-dimen-
sional set of features from a large set of variables.
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The Principal Components Regression approach (PCR) involves
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In other words, we assume that the directions in which X1, ..., X, show the most varia-
tion are the directions that are associated with Y.
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3.2 Partial Least Squares

The PCR approach involved identifying linear combinations that best represent the predic-
tors Xy, ..., X,.

Consequently, PCR suffers from a drawback

Alternatively, partial least squares (PLS) is a supervised version.

Roughly speaking, the PLS approach attempts to find directions that help explain both the
reponse and the predictors.

The first PLS direction is computed,

To identify the second PLS direction,

As with PCR, the number of partial least squares directions is chosen as a tuning
parameter.



4 Considerations in High Dimensions

Most traditional statistical techniques for regression and classification are intendend for
the low-dimensional setting.

In the past 25 years, new technologies have changed the way that data are collected in
many fields. It is not commonplace to collect an almost unlimited number of feature
measurements.

Data sets containing more features than observations are often referred to as high-dimen-
sional.
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What can go wrong in high dimensions?
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Many of the methds that we’ve seen for fitting less flexible models work well in the high-
dimension setting.

When we perform the lasso, ridge regression, or other regression procedures in the high-
dimensional setting, we must be careful how we report our results.



