
10

3 Dimension Reduction Methods
So far we have controlled variance in two ways:

We now explore a class of approaches that

We refer to these techniques as dimension reduction methods.

① Used a subset of original variables
- best subset

,
forward/backward selection

,
lasso

② shrinking coefficients towards
zero

- ridge regression, lasso.

These methods all defined using original predictor
variables of > . . >Xp .

① transform the predictions

② then perform least squares using transformed variables .

-

① Let Z , , .
. ,Zmµ represent ☒A< p linear combinations of our original predictors .

2-m=
& jmxj
j :\

for constants $1m , . . . > 4pm m =L
, - - ,

M

② Fit the linear regression model using least squares

M

Yi = O_O + 20m£in 1- Ei i =\
. -

. ,n

i
regression

coefficients
.

If ④jm}j=y . .p chosen well , this can outperform least squares .

M
-

-1g . - ,M
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The term dimension reduction comes from the fact that this approach reduces the problem
of estimating  coef�cients to the problem of estimating  coef�cients where 

.

Dimension reduction serves to constrain , since now they must take a particular form.

All dimension reduction methods work in two steps.

-

T 0-0,0-1 , - -10M
Po , Bi , - -, Bp

have
to come

from
from!L% somewhere

else Chope fully
we've

picked
held .

M n I -

£0m Zim = [ Qm [Éojmxi;] = É[EGm0im]xi;
m
-

- l m= ,
5=1 j =\ m= ,

p
=

Ep; Xij
in

M

Bj
= £0m im
M=l

⇒ special case of original linear regression problem
(with Pj constrained)
↳ it can bias coefficient estimate

↳ if p > n Cpr ns.n) selecting Map
can reduce variance

.

① transformed predictors are obtained ( get { §;m}i=i. . ,p
a- i.→ m
)

liar

[ ② "
d" " " """

^ "*↳ ^^
""" ""⑦ "

my. . ,µ

can be done in multiple ways.
selection of { §jm}i= :-p

We will talk about 2
.
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3.1 Principle Component Regression

Principal Components Analysis (PCA) is a popular approach for deriving a low-dimen-
sional set of features from a large set of variables.

The �rst principal component directions of the data is that along which the obervations
vary the most.

We can construct up to  principal components, where the nd principal component is a
linear combination of the variables that are uncorrelated to the �rst principal component
and has the largest variance subject to this constraint.

one
way

to
choose
Z , ,

-

. ,Zm

PCA is an unsupervisedapproach for reducing the dimension of an nxp
data

matrix

{ ✗ .

f-

✗ra

←yY¥÷¥tÑ
"
""

the ' " principal components are •stained

corr by projecting the data onto the 1st principal
-

(nponert
direction

.

a point isp
onto a

line by finding
the point

out of every possible linear combination of
X
,
and

(
on the line closest to the original point.

such that pi to Chi =P
,
choose pi . sit.

fined
atone eine .

varla-ix-F-x-x-pismaximiz-e.d.Zii-kthi-I.lt
•

EGGED
-⇒Éim is

for in, - - in

perpendicular to 1st PC
are

called

"*"""""" "
"
" """"""" """

.¥¥÷
1st PC

direction
=

dimension along

which data

tray
the

most .

V7
← Zi

, i-h.in

projected onto principal component directions .

1st PC contains the most information → ph pc contains - to least.
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The Principal Components Regression approach (PCR) involves

1. 

2. 

Key idea:

In other words, we assume that the directions in which  show the most varia-
tion are the directions that are associated with .

How to choose , the number of components?

Note: PCR is not feature selection!

a
choice

construct first M principal components z , , . ,
z.mg/wewem*Z

'

score vectors.

fit a linear regress in
model w/ 2-

, , . -,
2-
µ
as predictors using least squares .

Often a small # of PC suffice to explain most of the variability in the data
,

qÉÉÉr .

-

This is not guaranteed to be true
,
but often works well 1h practice .

If this assumption holds , filthy PCR will lead to better results then fitting least

squares model on ✗
, . .
- > Xp because we can mitigate overfrlty .

M can be thought of as a tuning parameter
⇒ use

CV method to choose !

as Mfp
,

PCR→ least squares. ⇒ bias d but Variance 9
,

will see bias
- trainee

trade-off in the form of

a U-shape in the test
MSE.

-

each of the M principal components used in the linear regression is a linear combination of

all
p
of te original predictors !

⇒ while PCR works well to reduce variance
,
it doesn't give us a sparse model.

PCR more like ridge regression than the lasso
.
( not going to help w/ interpretation)

Nott recommended standardizing predictors ✗
, , . , Xp to each hare St. dev

.
= I before getting

the PCs.
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3.2 Partial Least Squares

The PCR approach involved identifying linear combinations that best represent the predic-
tors .

Consequently, PCR suffers from a drawback

Alternatively, partial least squares (PLS) is a supervised version.

Roughly speaking, the PLS approach attempts to �nd directions that help explain both the
reponse and the predictors.

The �rst PLS direction is computed,

To identify the second PLS direction,

As with PCR, the number of partial least squares directions is chosen as a tuning
parameter.

can
do this

✓ using pls
function

in pls package
.

directions
-

We identified these directions in an unsupervised way ( response Y is not used
to help 4

determine the directions)
.

There is no guarantee that the direction tht best explains the predictors will also be
the

best directions to explain the relationship btw predictors and response.

-

of dimension reduction

① identify new features Z, , -yzm liner combination of original predictors

② fit linear model ( least squares) using transformed predictors
.

← i. e. uses
YÉY to find
$1m, $2m , . . > 0pm

MY-, M.

PLS also going to use Y lnot just ×) to find linear combinations of X,>→ Xp
f-

e-

linear combinations

① standardize the p predictors ( all have s.tt
. der. =D

.

② set each ¢;, equal to the coefficient from a simple linear regression Y~X;

since tie coefficient from SLR of 7~Xj 2 Cor ( Y
,
X;) PLS places highest weight

on variables that are strongly related ( linearly ) tote response .

*JNZ,
i =\
, - -in

① regress each variable ✗
n -

-

, Xp on Z
, and get residuals lrji = Xj ; - ^Xj, j =\, . .,p)

② Compute £2 by sitting each Oja equal to coefficient from SLR y~ of
residues
from step⑦

The residents r
, ,
- yrp I remaining information not explained by 1st PLS direction

.

⇒c=

Generally standardize the predictors and response before performing PLS
.

In practice , PLS asexually performs no better than ridge or PCR
.

↳ supervised nature of problem does reduce
, but often increases variance

.

⇒ not always better .
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4 Considerations in High Dimensions
Most traditional statistical techniques for regression and classi�cation are intendend for
the low-dimensional setting.

In the past 25 years, new technologies have changed the way that data are collected in
many �elds. It is not commonplace to collect an almost unlimited number of feature
measurements.

Data sets containing more features than observations are often referred to as high-dimen-
sional.

n >> p

This is because throughout the history of the field , the bulk of scientific problems
requiring statistics have been low dimensional.

e. g. ay
field trials,

?

W

Ip very large).

But n can still be limited due to cost
, sampling availability , etc

.

e.g.
Could predict BP on age, gender, BMI , and also collect half million SNPs

how
per Soo, ooo

but SNPs an expensive to collect , maybe only get ~Zoo of them.

e.g. Consider trying to model online shopping patterns . We could treat all search

terms in a person
's month - long browsing history as features in a

"

bag - of -
words " model

.

But we may only only have a few thousand people who have consented to use

their history .

For a given use the features would be absence (o) or presence
(1) of each

potential starch term . ⇒ p large but n~~ 2000

pm
-

-

classical approaches ( like least squares) are not appropriate in this atty .

(why ? think bias- variance trade-off and overfitting) .

⇒ we need to be careful when nip or n< p.
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What can go wrong in high dimensions? going to talk about least squares
but sane issues

arise w/ logistic regression or LDA

IF pan or p >n regardless of if there is a relationship w/ response pen.

least squares will yield a set of coefficients that is an lalnost if nap Int n~_p
) perfect fit.
⇒ residuals -0

.

n
--20
, f- I

n >P ⇒ not perfect fit. n=2
, p-t.lt intercept) . n= # coefs ⇒ perfect

fit = >

overfitting .

the realty
model will most

likely hare
poor predicate
performance on

test data .

Simulated data w/ n
--20 and regression performed with between lad 20 features

.

features generated in Ikki to response

training MSE

[
"""

more predictors
even though
no relationship

to response.

increasing
even

though

NO
RELATIONSHIP
w.

;

✓

É"¥test Msf never very good adjusting pipe better
estimate

b.µ not a good predictive test use : Cp , Atc, BIG adj
Ñ

fit (no relationship)

⇒ we need to be very careful when analysing data w/ many predictors .

13¥ : in high dim shtht"

we can't compute.

Always need to evaluate model performance on idp test sit Hiner models?
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Many of the methds that we’ve seen for �tting less �exible models work well in the high-
dimension setting.

1. 

2. 

3. 

When we perform the lasso, ridge regression, or other regression procedures in the high-
dimensional setting, we must be careful how we report our results.


