Chapter 7: Moving Beyond Linarity

So far we have mainly focused on linear models.
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Previously, we have seen we can improve upon least squares using ridg;egression, the las-
S0, principal components regression, and more.
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Through simple and more sophisticated extensions of the linear model, we can relax the :
linearity assumption while still maintiaining as much interpretability as possible. —> extensiac 7
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1 Step Functions

Using polynomial functions of the features as predictors imposes a global structure on the
non-linear function of X. -

We can instead use step-functions to avoid imposing a global structure.
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For a given value of X, at most one of C1,...,Ck can be non-zero.
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Example: Wage data. @, 8 govp ,{ 3000 mafe workers - M f;,+[o,1,~c regi.
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2 Basis Functions

Polynomial and piecewise-constant regression models are in face special cases of a basis
function approach.

Idea:

Instead of fitting the linear model in X, we fit the model

Note that the basis functions are fixed and known.

We can think of this model as a standard linear model with predictors defined by the basis
functions and use least squares to estimate the unknown regression coefficients.



3 Regression Splines

Regression splines are a very common choice for basis function because they are quite flex-
ible, but still interpretable. Regression splines extend upon polynomial regression and
piecewise constant approaches seen previously.

3.1 Piecewise Polynomials

Instead of fitting a high degree polynomial over the entire range of X, piecewise polynomi-
al regression involves fitting separate low-degree polynomials over different regions of X.

For example, a pieacewise cubic with no knots is just a standard cubic polynomial.

A pieacewise cubic with a single knot at point ¢ takes the form

Using more knots leads to a more flexible piecewise polynomial.

In general, we place K knots throughout the range of X and fit K 4 1 polynomial regres-
sion models.



6 3 Regression Splines

3.2 Constraints and Splines

To avoid having too much flexibility, we can constrain the piecewise polynomial so that the
fitted curve must be continuous.

To go further, we could add two more constraints

In other words, we are requiring the piecewise polynomials to be smooth.

Each constraint that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, bu reducing the complexity of the resulting fit.

The fit with continuity and 2 smoothness contraints is called a spline.

A degree-d spline is
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3.3 Spline Basis Representation 7

3.3 Spline Basis Representation

Fitting the spline regression model is more complex than the piecewise polynomial regres-
sion. We need to fit a degree d piecewise polynomial and also constrain it and it’s d — 1 de-
rivatives to be continuous at the knots.

The most direct way to represent a cubic spline is to start with the basis for a cubic poly-
nomial and add one truncated power basis function per knot.

Unfortunately, splines can have high variance at the outer range of the predictors. One so-
lution is to add boundary contraints.



8 3 Regression Splines

3.4 Choosing the Knots

When we fit a spline, where should we place the knots?

How many knots should we use?

3.5 Comparison to Polynomial Regression
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4 Generalized Additive Models

So far we have talked about flexible ways to predict Y based on a single predictor X.

Generalized Additive Models (GAMs) provide a general framework for extending a stan-
dard linear regression model by allowing non-linear functions of each of the variables
while maintaining additivity.

4.1 GAMs for Regression

A natural way to extend the multiple linear regression model to allow for non-linear rela-
tionships between feature and response:



10 4 Generalized Additive Models

The beauty of GAMs is that we can use our fitting ideas in this chapter as building blocks
for fitting an additive model.

Example: Consider the Wage data.
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4.1 GAMs for Regression

Pros and Cons of GAMs

11



12 4 Generalized Additive Models

4.2 GAMs for Classification

GAMs can also be used in situations where Y is categorical. Recall the logistic regression
model:

A natural way to extend this model is for non-linear relationships to be used.

Example: Consider the Wage data.
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