
Chapter 7: Moving Beyond Linarity
So far we have mainly focused on linear models.

Previously, we have seen we can improve upon least squares using ride regression, the las-
so, principal components regression, and more.

Through simple and more sophisticated extensions of the linear model, we can relax the
linearity assumption while still maintiaining as much interpretability as possible.

Linear models are relatively simple to describe and implement.
Advantages : interpretation & inference .

Disadvantages : can have limited predictive performance because linearity is always an approximation -

- ge

improvement obtained by reducing complexity of their model ⇒ lowering variance of estimates

still a linear model ! Can only be improved so much.

→ extensions of
linear model.

① pdynomialrenn : add extra predictors that
are original variables raised to a power

we've
e. g.

Cubic regression un X
,
X? ✗

3
as predictors - Y

= Pot fix + piet pics+ E.seen

this one

already . * : non
- linear fit

• e. with large powers polynomial can take strange shapes [ especially near the boundary).

② stepfunuti.ns-i.cat the range of a variable into K distinct regions to produce
a categorical variable . Fit a piecewise constant function to ✗ .

③ ,RegressibnSpl : more flexible than polynomial and step functions (extends both)

idea : cut range of ✗ into K disjoint regions É
,

polynomial is fit within each

region .

Polynomials are constrained so tht they are smoothly joined.

④ Generlitedaddit.ie#des extend above to deal w/ multiple predictors.

We are going to start w/ predicting Y on ✗ ( single predictor) and extend to multiple .

Notes: ve can talk regression or classification 4 above
. e.g. logistic regression Paix)="¥¥%¥¥¥F¥¥p⇒
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1 Step Functions
Using polynomial functions of the features as predictors imposes a global structure on the
non-linear function of .

We can instead use step-functions to avoid imposing a global structure.

For a given value of , at most one of  can be non-zero.

-

-

idea : break range of ✗ into bins and fit constant in each bin
.

details : ① Create cut points Cnn , Ck in the range of✗

Note for any ✗ , cold t.CH/-..tGlx)--z② construct Ktl new variables

because ✗ must lie in exactly 1-
GAD =I(✗ < G) interval .

↳ ☒ = # ( " ± ✗ < ↳ ""* """""

i. a dining variables
"

i

leave out
Cock) because

CKCX) = I. ( 4<1×7 ✗ this , : equivalent t

③ Use least squares to fit linear model using c.CH , . . , ↳(K)
'

hdndnyomitrapt-Y-pothcihtn.tpkciid.IE
.

when ✗ < c
,

all 941 , . . . Gdx) =O.

⇒ Po interpreted as the new valve of Y when ✗ < g

p; represent average increase in response for ✗ c- [ Cj ,cj+,) relative to ✗< ↳

We can also fit logistic regression for classification

a-* =÷÷¥:¥÷÷÷:¥⇒ .
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Example: Wage data.

year age maritl race edu-
cation region job-

class health health_ins logwage wage

2006 18

1.
Never
Mar-
ried

1.
White

1. <
HS
Grad

2. Mid-
dle
At-
lantic

1.
Indus-
trial

1.
<=Good 2. No 4.318063 75.04315

2004 24

1.
Never
Mar-
ried

1.
White

4.
Col-
lege
Grad

2. Mid-
dle
At-
lantic

2.
Infor-
ma-
tion

2.
>=Very
Good

2. No 4.255273 70.47602

2003 45
2.
Mar-
ried

1.
White

3.
Some
Col-
lege

2. Mid-
dle
At-
lantic

1.
Indus-
trial

1.
<=Good 1. Yes 4.875061 130.98218

2003 43
2.
Mar-
ried

3.
Asian

4.
Col-
lege
Grad

2. Mid-
dle
At-
lantic

2.
Infor-
ma-
tion

2.
>=Very
Good

1. Yes 5.041393 154.68529

for a group of 3000 male
workers it Mid-atlantic region .

0

÷
÷::÷:p i.of wage

using

4--30 Cibo
age.

logistic regression mobility prob of
missing
increasing trend ' being high earner gim age

(wage > 250k)

using step function w/ knots at ✗=30,60 .

Unless there are natural breakpoints in the predictor

piecewise constant functions can miss tends.
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2 Basis Functions
Polynomial and piecewise-constant regression models are in face special cases of a basis
function approach.

Idea:  

Instead of �tting the linear model in , we �t the model

Note that the basis functions are �xed and known.

We can think of this model as a standard linear model with predictors de�ned by the basis
functions and use least squares to estimate the unknown regression coef�cients.

t

have a family of functions or transformations that can be applied to a variable ✗

b. (X) , . . ,bk(X) .

Yi
=

pot Pibitxi )t . - - + pkkfxi )tEi

( we choose these ahead of time) .

e. g. polynomial regression bjlki)=x? j=l
, . . . ,k .

e. g. step functions bjfx;) =I( Cj E Xi < cjti) for 5--1, - . > K .

-

- -

P 's .

⇒ we can also use all of our inferential tools for linear models
, e.g. Se ( §;) and

f- statistic for model significance .

Many alternatives exist fr basis functions :

e. g.
wavelets

,
fourier series , regression splines (next .
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3 Regression Splines
Regression splines are a very common choice for basis function because they are quite �ex-
ible, but still interpretable. Regression splines extend upon polynomial regression and
piecewise constant approaches seen previously.

3.1 Piecewise Polynomials

Instead of �tting a high degree polynomial over the entire range of , piecewise polynomi-
al regression involves �tting separate low-degree polynomials over different regions of .

For example, a pieacewise cubic with no knots is just a standard cubic polynomial.

A pieacewise cubic with a single knot at point  takes the form

Using more knots leads to a more �exible piecewise polynomial.

In general, we place  knots throughout the range of  and �t  polynomial regres-
sion models.

START w/
( combination of polynomial regression & piecewise

constant approach 1
.

-

e. g. piecewise cubic w/ knot at a ÷r

i.e. fit two
different polynomials to data

done on subset for xcc

one on subset for KIC.

if fit polynomial of degree 0 ⇒ piecewise constant regression .

Pat Bukit Paix
? + Pix? + Ei if Xi < c

ai
-

- {
post pinxit Pzzx?

+ pzzx? + Ei
if 7: IC

each polynomial can be fit using least squares.

If we place L knots ⇒ filthy Ltl polynomials
l don't have to be cubic) .

• •

of degree d.

This leads to ( dtl ) (Ltl) degrees of freedom in model

(# parameters to fit a complexity/ flexibility) .
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3.2 Constraints and Splines

To avoid having too much �exibility, we can constrain the piecewise polynomial so that the
�tted curve must be continuous.

To go further, we could add two more constraints

In other words, we are requiring the piecewise polynomials to be smooth.

Each constraint that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, bu reducing the complexity of the resulting �t.

The �t with continuity and 2 smoothness contraints is called a spline.

A degree-  spline is  

e-

i.e. there cannot a jump at the knots .

① 1st derivatives of the piecewise polynomials are continuous attire knots

② 2nd derivatives of tu piecewise polynomials are continuous at he knots .

:- -

0

a piecewise degree - d polynomial of continuity in derivatives .

up to degree d- P at each knot .

sharp change

of
at c-

so

jump atoso
0

E- 50

cubic spline
piecewise cubic polynomialpiecewise ab" poly" - id
w/ continuity enforced

.

cts &
it
,

2nd dei vs cts
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3.3 Spline Basis Representation

Fitting the spline regression model is more complex than the piecewise polynomial regres-
sion. We need to �t a degree  piecewise polynomial and also constrain it and it’s  de-
rivatives to be continuous at the knots.

The most direct way to represent a cubic spline is to start with the basis for a cubic poly-
nomial and add one truncated power basis function per knot.

Unfortunately, splines can have high variance at the outer range of the predictors. One so-
lution is to add boundary contraints.

upto

We can use the basis model to represent a

regression spline .

spine
✓1k

""
"

Yi
=

Pot pub, Gci ) tpzbzlxilt.it Pkt}bk+> Gci) + Eie.g.
Cubic

w/ appropriate basis functions ↳ ,
-
-

, bktz .
d--3

-

2-

hlx , 9) = Gc - 9)I = { (x
- EP if x >9 where 9 istre trot

0 aw.

K

⇒ Yi = pot ppcitpixi + pzx? + §,
Pst; • hlxiiee;) + Ei

this will lead to discontinuity in only he 3rd derivative at each fj w/ continuous

first and second derivatives and continuity at 9; ( each
trot ) .

df : Kt 4 ( cubic spline w/ k knots.

small
-

or large .
⇒

" natural spline
"

function required to be linear at the boundary ( where ✗ is smaller then smallest trot

and larger than largest knot )

additional constraint produces more stable predictions at the boundaries.
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3.4 Choosing the Knots

When we �t a spline, where should we place the knots?

How many knots should we use?

3.5 Comparison to Polynomial Regression

regression spline is most flexible in regions that contain a lot of knots (coefficients charge
more rapidly ) .

⇒ place knots where rethink relationship will vary rapidly and lest where it is stable .

-

¥111k
Most common in practice : place them uniformly
Do this : choose desired degree of freedom [ flexibility ) t use software to automatically

place corresponding # knots at uniform quartiles of data .

tuning?→
⇒ how many df should

we have ?

Use C.V. ! use K gives smallest CV Mst (or Cv error)
.

Regression splines often give superior results
when compared to polynomial regression

polynomial regression must have high degree to achieve flexible fit leg .
X
's

)
,

but regression

splines intro ducie flexibility through knots ( w/ degree fixed ) ⇒ more stability esp . atte
boundaries.

polynomial
✓ w/ degree

Is

|[nature """P"if df
= Is

extra flexibility of polynomial at boundary produces undesirable result but

splie w/ some df looks pretty reasonable .
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4 Generalized Additive Models
So far we have talked about �exible ways to predict  based on a single predictor .

Generalized Additive Models (GAMs) provide a general framework for extending a stan-
dard linear regression model by allowing non-linear functions of each of the variables
while maintaining additivity.

4.1 GAMs for Regression

A natural way to extend the multiple linear regression model to allow for non-linear rela-
tionships between feature and response:

These approaches can be seen as extensions of simple linear regression

Y = pot P, ✗ + E

flexibly predict Y band
on basis of several predictors ✗

, ,
-
-

, Xp .

Still additive models

can be used for regression or classification ( more later)
.

-

linear regression Yi = fotp.X.it - - - + Ppxpi + Ei

idea : replace each linear component pjXj,
- w/ a smooth non - linear function

.

⇒ GAM : yi = pot Éfjtxj ;) + Ei
j=,

= pot f, Gci ) + fztxz;) f- . - + fplxpi) + Ei

"
additive

" because he calculate separate fj for each ✗; and
add them together.

possibilities fr f;
:

-

identity function ( leads to linear regression )

- polynomial function
- regression splines ( or natural splines) .

- smoothing splines
- local linear regress ,

,
,
] not towed but see textbook ch

.

7.5-7.6 for details.
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The beauty of GAMs is that we can use our �tting ideas in this chapter as building blocks
for �tting an additive model.

Example: Consider the Wage data.
-

-

quantitative µ
categorical .

Wage = pot f, (yea e) tf> (education ) + E

where f
,

is a natural spline w/ Udf.

fog is a natural split w/ 5 df

f-
,
is identity function of dummy variables created for each level of education

( piecewise constant) .

easy to ft w/ least squares by choosing appropriate basis factions .

Ei

iÉ ;É
g.µ g. ,✓

point.be?iIKml.

relationship between each vanish and response :( holding other variables constant):

- year : hold age and education fixed
,
wage tends to increase w/ year. [inflation ? )

• age : holding year and education fixed
,
wage is low for young people and old people, highest

for intermediate age .

• education : holding year
ad age fixed , wage tends to increase w/ education

herd .

- We could easily replace tj with different smooth functions and get different fits .

just need to change basis and use least squares .
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Pros and Cons of GAMs

Advantages
- GAM s allow nonlinear fit fi for each ✗j to model

non-linear relationships that linear regression will
miss .

- non-linear fits can potentially allow fer more accurate prediction in the response
( if there is a truly non-linear relationship ) .

- additive model⇒ we can still examine the effect of each ✗j on Y individually while

holding all other variables fixed

⇒ 6AM s provide a useful representation
for inference / interpretation .

- smoothness of fj for Xj can be summarised by df.

Limitations
- model is restricted to be additive

i. e. W/ may predictors , important interactions can be missed
.

solution : as 4 Wear regression he can manually add interaction terms by including

additional predictors if the form ×;
*✗←

or add low dimensional interaction functions of tee form fjk(✗j ,
✗a)

i
e.g. two

- dimensional spline
(not covered).

For fully general models , we have to look for an even more flexible approach like
random forests or boosting ( next) .

GAMs provide a usefulcompromise between linear and fully nonparametric approaches .



12 4 Generalized Additive Models

4.2 GAMs for Classi�cation

GAMs can also be used in situations where  is categorical. Recall the logistic regression
model:

A natural way to extend this model is for non-linear relationships to be used.

Example: Consider the Wage data.

µ
assume

Y takes
values

ch 0,1

( generalizations
exist to

more

categories
)

.

log 114¥) = pot pint -
- -
+ fspxp

t
logit - log

-odds of Ply --11×7
us

. PCY --01×7 .

as linear function of predictors .

-

log (⇒ =

pot f.Hit . - - tfplxe .

"

logistic regression 6AM
"

let Y = Wage - $250k
"

high earners
"

we could fit a toast" regression GAM
for each

education bid

df = " df = g f
piecewise

constant

log f¥) = pot f. (year) tfzlage) +5,1 eduction )
I can't

see '

✓ but
increase

'Y

natural splines
w,
equator

'

o¥
in
this looks quite
linear

not many Yaple
"

maybe replace
w/ linear

data at w/
< HS and

or

without much loss of information
µ, age

and high earner
"

and t lower variance .

looking at the
Yales age t education have more of effect on p(high earner /X) than Year .


