
Chapter 8: Tree-Based Methods
We will introduce tree-based methods for regression and classi�cation.

The set of splitting rules can be summarized in a tree “decision trees”.

Combining a large number of trees can often result in dramatic improvements in prediction
accuracy at the expense of interpretation.

Credit: http://phdcomics.com/comics.php?f=852

Decision trees can be applied to both regression and classi�cation problems. We will start
with regression.

nonporametimenods
.

I supervised

→
quantitativey y

categorical Y .

These involve segmenting the predictor space into a number of simple regions .

to make a prediction for an observation
,
we use or inode of training observations

in the region to which it belongs.

-

- simple and useful for interpreting .

- not competitive W other supervised approach (e. g- lasso) for
prediction .

→
boosting ,

baggiyrd.ru forests

-

2

1 Regression Trees
Example: We want to predict baseball salaries using the Hittters data set based on
Years (the number of years that a player has been in the major leagues) and Hits (the
number of hits he made the previous year).

The predicted salary for players is given by the mean response value for the players in that
box. Overall, the tree segments the players into 3 regions of predictor space.

start 4

→more details on

how later.

We can make a series of splitting rules (according a tree fit to this data)
to create regions and predict salary as the meal of trashing obs

.

in each region .

yyears<"#
$165,174

REY02,834 R
,

$845,345

j ""

R
,

T 4ns

probably
an

oversimplification

guy
is eagy.to

interpret ad
has nice graphical representation.

terminology
: Ri shh Rz = termindnodes_ or leaves of the tree .

-

points along the where predictor space is split← internalndes

segments of tree tht correct node = branches

interpretation
: Years is te most important factor in determining salary

↳ given that a player
has less experience, A- hit in previous year play, little role in his salary .

↳ among players who has been in the league stripers ,
F- hats does affect salary: 9 hits , 9 salary .

3

We now discuss the process of building a regression tree. There are to steps:

1.

2.

How do we construct the regions ?

The goal is to �nd boxes that minimize the RSS.

The approach is top-down because

The approach is greedy because

→
quantitative

y

Y

→
set of possible valves for X

, ,
. . , Xp

Divide predictorspace
into J distinct and non

- overlapping regions R
, , - , RJ

Predict

For every observation that fall into region R; we make
the same prediction - the mean

of the response Y for training valves in Rj .

How to divide predictor space ?

Regions could be any shape, but that is too hard (to do & te interpret)

⇒ divide predictor space 1h10 high dimensional rectangles (boxes) .

= É E Ey ; - ^yR;)
"

where ÑRj= mean response
of bounty

j= I IER; data in

Unfortunately it is computationally infeasible to consider every pith box.

possible partition .

⇒ take a greedy , top-down approach called recursivebinaryspitty .

We start at top of the tree (where all observations are in a single region) and successively split

tire predictor space .

↳ each split is indicated via two new branches down te tree .

at each step of tie
tree building process , the best split is made at twpH .

←

not looking ahead to make a split that
will lead to a better tree later.

4 1 Regression Trees

In order to perform recursive binary splitting,

The process described above may produce good predictions on the training set, but is likely
to over�t the data.

A smaller tree, with less splits might lead to lower variance and better interpretation at
the cost of a little bias.

A strategy is to grow a very large tree and then prune it back to obtain a subtree.

① Select the predictor and cutpoint s sit
. splitting the predictor space into regions

{× :X; < s } and { ×:X; 753 leads to the greatest possible reduction in Rss .

↳ Ve consider all possible ✗
, , . , Xp and all possible catpoints s then choose predicts and outpoint

w/ lowest Rss.

i. e. consider all possible half-planes R
,
(jis) = { ✗ :X; as } and Ra (jis) -- {× :X,- z s }

we seek j and s that minimize

E (Yi - Ñyp ,)
"

+ E Cgi -ÑgpÑ
← finding j and s can be quickly done

i :X
.

- ER
,
(ji)

if p is not too large.
i :Xit R , Cj , s)

② Repeat process , looking for next test j and S ☒ombo but instead of splitting entire space, we split
R

,
(ji) and Rzlj, s) to minimize RSS, ③ Continue WH

stopping criteria .;
met (i. e. no

region contains

because the resulting tree may be too couple✗
more than sobs) .

⇒ less regions Ri , - -, RJ ⑨ predict using
mean of training
obs in the region

- towhich he test

falls .
Idea : Only split a tree if it results in a

"

large enough
"

drop in Rss.
t
badidea : because a seemingly worthless split early 1h1m tree might be followed

by a good split .

Better
idea

How to prune the tree ?
-

Goal : elect a subtree that leads to lowest test error rate?
could use CV to estimate error for every

subtree
,
but this is expensive.

solution :
" cost complexity pruning

"

,
aka " weakest link pruning

"

consider a sequence of subtrees indexed by a nonnegative tuning parameter 4.

For each valve of ✗
,
F a corresponding subtree TCI si .

PTA

£2 (Yi - Ñgpmt + ✗ ITA is as small as possible .
mm xitpnm

W q = To
terminal nodes in the tree .

µ ⇒ price
to
pay

✗ controls trade off between subtrees complexity and fit to training data
?

°
"
"
°

having many
terminal

select d by CV
.

nodes T

⇒ smaller
tree.

↳ Then use full dataset & chosen ✗ to get subtree .

5

Algorithm for building a regression tree:

① Use recursive binary splitting to grow a large tree on training data
, stop only

when each terminal node has fewer then some minim 'm # of observations.

§② Apply cost complexity pruning to large tree to get a sequence of best trees Cas

function of a)

③ use 1$- fold CV to choose a

Divide training data
into KK folds

,
for each 1<=1

,
. . ,K

(a) Repeat 1 and 2 on all but Kt
fold

.

(b) Evaluate the Ms PE on data in Ktn fold as f-chin of 2.

Average results for each ✓the of ✗ and pick 2 to minimize CV error
.

④ Return subtree from ② that corresponds to ✗ from③ .

So % train
split .Ee:FiÉWttiy9¥→%t

④ is the large tree

② CV error to estimate test error as function of d.

③ subtree selected

most importantdataset. ② ③④ ☐ 0
2nodez§ subtree

0
0

/ " depth of tm
"

function of ✗

Select the

of size 2 .

6

2 Classi�cation Trees
A classi�cation tree is very similar to a regression tree, except that it is used to predict a
categorical response.

For a classi�cation tree, we predict that each observation belongs to the most commonly
occurring class of training observation in the region to which it belongs.

The task of growing a classi�cation tree is quite similar to the task of growing a regres-
sion tree.

It turns out that classi�cation error is not sensitive enough.

When building a classi�cation tree, either the Gini index or the entropy are typically used
to evaluate the quality of a particular split.

Recall for a regression tree , the predicted response for an observation is given by
the mean response of training observations that belong to a terminal node

-

the mode-

We are often also interested in the class prediction proportions that fall into each

terminal node .

↳ this gives us some idea of how reliable the prediction is
55% class 1

both predict
c. g. terminal node w/ 100% class 1 vi.

45% class 2 "class 1 !

Use recursive binary splitting to grew classification the

But Rss cannot be used as criterion for splitting .

Instead a natural alternative is clarification error rate
. tem.me.

= fraction of training obs that do not belong to most common class in trade
.

= l - M (̂ Pmk#
proportion of trashing

obs in nth region from Kt class .

for growing a tree.

preferred measures K

more
sensitive

① Gini index 6=2 ^pmk (I - p^mk) measure of total variance across K classes .

µ note
PHY

k -- l

↳ takes small valves if all pm, close to 0 or 1. => measure of
"

node purity
"

IG ⇒ nodes contain primarily whos
ever
rte

k from 1-class .

""
""
""

- www..mg

② Entropy D= - E
"pmkloyipmk

K-- l

↳ will take valves near 0 if jpmk close to 0 or I ⇒ ID when nodes more
"

pure
"

Giri ord Entropy are actually quite similar numerically that e : neither

w/ unbalanced

class data .

Any of the 3 methods can be used for prying i but if there are other

pruned options outther

prediction accuracy of final ✓ tree is the goad ⇒ classification error
to split on .

rate should be

used for pruning .

7

3 Trees vs. Linear Models
Regression and classi�cation trees have a very different feel from the more classical ap-
proaches for regression and classi�cation.

Which method is better?

3.1 Advantages and Disadvantages of Trees

eg .
liver regression fact = Pot §

,
,Xjpj

regression the fact = ÉcmI(xtRm)
.

M -4

Where p , , . . ,Rm are partition of the feature space.

It depends on the problem .

linear, linear regression > regression
- If relationship between features t

response is approximately tree .

- If high non - linear relationship (complex), decision trees may
be better

.

Also trees may be preferred because of interpretation or
visualization .

Advantages Disadvantages
- do not have some level of predicts he-

easy to interpret (easier the- linear regression)
performance as otw methods we 're seen .

- some people think
decision ties more closely

""" ""
"""" """" " """ "" "" "

"" "

hare large change in estimated tree
-

can be displayed graphically
(high variability)(easy to interpret for non - experts -

especially it small) . I
• can handle categorical predictors can

we
'

aggregate may
trees to try

easily .
to improve this

!

8

4 Bagging
Decision trees suffer from high variance.

Bootstrap aggregation or bagging is a general-purpose procedure for reducing the vari-
ance of a statistical learning method, particularly useful for trees.

So a natural way to reduce the variance is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions.

Of course, this is not practical because we generally do not have access to multiple training
sets.

"Bootstrap aggregation
"

i. e. if he split data in half randomly , fit decision tree to both halves results
could

be quite different
.

V5
.

low variance will yield similar results if applied repeatedly to distinct datasets

(from same population)

↳%iw regression when h > >p .

-

Fee : for a given set of
h indep obs. Z

, , . . ,Zn each w/ variance 6?
indp.

n t

Var (E) = Var (tn E. Zi) = ¥ Évwzi = tin . 62 = ÷ .

I =\

i.e. averaging a set of observations reducesvariance .

-

i.e. take B training sets,
calculate f- 'GA

,
EGG

.
. .

. ,
5- Blxl .

obtain low - variance statistical learning model :

Fania -- ÷É Fix .
5--1

Collecting training data can be expensive.

Instead we could take repeatedly lwl replacement from the training data set.
(these are called "

bootstrapped
"

training datasets , i.e.
"

pulling ourselves up by our bootstraps
")

↳ assumes empirical dsn from sample is similar to population dsn , i.e. we have a
"

good
"

sample
a

representative .Then we could train our method on bth bootstrapped data set to get f-*↳ and
average :

^

5-
bag
IN = ÷ ?¥

,

f- *bby
.

This is called
"

bagging
"

, short for bootstrap aggregation .

4.1 Out-of-Bag Error 9

While bagging can improve predictions for many regression methods, it’s particularly use-
ful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classi�cation problem?

4.1 Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model, without
the need to perform cross-validation.

To apply bagging to regression trees
,

① construct B regression trees using B bootstrapped data sits

④ average tesultry predictions.

-

⇒ each tree has low bias & high variance
hundreds or thousands of trees !

averaging trees reduces the variance by combining - -
↳ this can be slow.

Won't lead to overfitting

Camiieragiy
(because EE =o).

no longer an option).
for a giver test observation

,
record class predicted by each of the B bootstrapped trees and

take a majority vote : overall prediction is the class that occurs most often
.

Key : trees are repeatedly fit to bootstrapped subsets of original training
obs

.

⇒ has to do with the prob of being selected in the bootstrap
as Bros.

↳ on average each tree uns I 3- of te data to fit the tree .

i. e. I ↳ of observations Not used to f-the tree (out-of- bag DOB observations
.

idea: we predict the response fer ith observation using all trees in which that obs was 0013
.

this will to I B- predictions of it observation
.

The average (or majority vote) of these predictions to get single 0013 predictions for it observation .

We can use these oois predictions for each training obs to get 0013 Msf(or loop classification
error)

which is an estimate of test error
!

This is valid because we only ever use predictions from models (tms) that did not use

those data points in fitting !

10 4 Bagging

4.2 Interpretation

Bagging typically results in improved accuracy in predictions over a single tree !

But it can be difficult to ident a resulty model

↳ one of tn biggest advantages of decision trees

↳ no longer possible to represent the resulting procedure using a single the

⇒ no longer clear
which variables are themostinpotat to predict

tie response.

Bagging impious prediction at the
total expense of insetability .

What can we do?

We can obtain an
overall summary of

the importance of each pelidor using Rss
(or Gini index

- record total anout of RSS (or G.hi) is decreased due to splits over agiar predictor

averaged our B ties,

-

a large valve indicates an important predictor .

11

5 Random Forests
Random forests provide an improvement over bagged trees by a small tweak that decorre-
lates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training
samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the chouce of predictor subset
size .

-

-

But when building th trees
,
a random sample of m predictors is chosen as split candidates

from the full set of p predictors,
↳ the split is only allowed to use one of those predictors.

↳fresh sample of predictors taken at each split
↳ typically my,Tp.

why ?

Suppose there is me strong predictor 1h data set and
a number of moderately strong predictors .

In the collection of trees , most or all trees till useslyer
as he Xp split.

⇒ all of the bootstrapped trees will look quite hh.tw !
⇒ predicting will be highly correlated.

(bagging .
and averaging correlated valves doesnot lead to much variance reduction .

Random forests overcome this by forcing each split to consider a subset of predictors
.

⇒
on average (P-pm)_ of the splits will not even consider strong predictor⇒ other predict" ""

have to be chosen
.

i

If m=p
⇒ random forest =bagging .

Using small m will typically help when we hare a lot of correlated predictors.

- As with bagging ,
we don't need to worry about our filthy 4 large B.

-

And he can examine importance of each variable in the same way .

randomforest package in R.

12

6 Boosting
Boosting is another approach for improving the prediction results from a decision tree.

While bagging involves creating multiple copies of the original training data set using the
bootstrap and �tting a separate decision tree on each copy,

Boosting does not involve boostrap sampling, instead each tree is �t on a modi�ed version
of the original data set.

very popular
right now

*

(see
Ada

boost or
✗ G

boost) .

Again the idea of boosting is a general approach part can be applied to many statistical learning models.

We will use it w/ decision trees.

Boosting grows trees sequentially using information from previously grown trees
.

-

-

Regression :

idea : the boosting approach grows tree (learns) slowly to avoid overfitting .

> Given the current model fit a decision true to the residuals from tie model

and add the decision tree to the fitted function to update.

> each tree is very small (just a few terminal nodes)

⇒ slowly improving § in areas where it does . net perform well !

Algorithm
① set § 1×7=0 and ri = yi

Yi in training set .

② b-- l
,
.
-

, B repeat

(a) Fit a tree Fb w/ d splits Cdt , terminal
nodes) to training data Rx, r)

(b) Update 5- by adding a shrunken version of the new tree

5- Gc) = fix + ✗ § bad .
[helps us

not learn too fast (avoid onefilthy) .

(c) Update the residuals

ri
= ri - ✗ 5- 4) txi) .

③ Output the beoskd model j-yiy-%FF.tk) .

13

Boosting has three tuning parameters:

1.

2.

3.

Boosting classification trees is similar idea
,
but more complex in details

.

Gee textbook .

B- the A- of trees .

Unlike bugging and RF
, boosting it v1 large B.

We can use CV to select B.

7- shrinkage parameter .
The controls the rate at which boosting learns

.

Typical : 7 = 0.01 or 7=0.001

Very small 7 can require large B to
achieve good performance .

depends on the problem /data .

d- # of splits in each tree .

Controls complexity of the whole model
.

Often 1=1 works well (
"

stumps
")

↳ if so
,
boosted ensemble is additive

↳ "

Ada boost
"

Generally , d is the interaction depth and controls the interaction order of

the boosted model since d splits ⇒ at most d variables
.

One of te coolest things about boosting is that not only does it work well,

but it fits nicely into a statistical framework called
"
decision theory

"

,

meaning we have some guarantees about its behavior !

