
Chapter 9: Support Vector Machines
The support vector machine is an approach for classi�cation that was developed in the
computer science community in the 1990s and has grown in popularity.

The support vector machine is a generalization of a simple and intuitive classi�er called the
maximal margin classi�er.

Support vector machines are intended for binary classi�cation, but there are extensions for
more than two classes.

Credit: https://dilbert.com/strip/2013-02-02
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1 Maximal Margin Classi�er
In -dimensional space, a hyperplane is a �at af�ne subspace of dimension .

The mathematical de�nition of a hyperplane is quite simple,

This can be easily extended to the -dimensional setting.

We can think of a hyperplane as dividing -dimensional space into two halves.
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1.1 Classi�caton Using a Separating Hyperplane

Suppose that we have a  data matrix  that consists of  training observations in -
dimensional space.

and that these observations fall into two classes.

We also have a test observation.

Our Goal:
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A other class
.
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Develop a classifier based on training data that will correctly classify

tie test observation based on feature measurements .

We have already used many approaches :

logistic regression ( penalized
version , ie .

LASSO or ridge)

LDA

classification -trees

bagging
Random forests

Boosting , etc .

We will see a new approach using a sepcratiyhypepane .
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Suppose it is possible to construct a hyperplane that separates tthe training observations
perfectly according to their class labels.

Then a separating hyperplane has the property that

If a separating hyperplane exists, we can use it to construct a very natural classi�er:

That is, we classify the test observation  based on the sign of 
.

We can also use the magnitude of .
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⇐
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A test observation is assigned to a class depending on
which side of

the hyperplane it is
located .

If fact) 20 assign x
"

to class 1

ffx*) co assign ✗
* to class - d

If fGc*) is far from zero ( large magnitude) means # lies far from the hyperplane

⇒ we can be confident about our class assignment for x*.

If FGM is close to zero ( small magnitude) it is located near the hyperplane

⇒ we are less confident about
the class assignment for ✗

*

Note : a classifier band on separating hyperplane leads to a linear decision boundary.
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1.2 Maximal Margin Classi�er

If our data cab ve perfectly separated using a hyperplane, then there will exist an in�nite
number of such hyperplanes.

A natural choice for which hyperplane to use is the maximal margin hyperplane (aka the
optimal separating hyperplane), which is the hyperplane that is farthest from the training
observations.

We can then classify a test observation based on which side of the maximal margin hyper-
plane it lies – this is the maximal margin classi�er.
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⇒ which one to use for our classifier?
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- the smallest distance is known as the
"

margin
"

The maximal margin hyperplane is the one w/ the largest margin, i. e. farthest from all training points.
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Hopefully a large margin on training data will lead to a large margin contest data

⇒ classify test data correctly
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We now need to consider the task of constructing the maximal margin hyperplane based
on a set of  training observations and associated class labels.

The maximal margin hyperplane is the solution to the optimization problem

This problem can be solved ef�ciently, but the details are outside the scope of this course.

What happens when no separating hyperplane exists?

Ii , . . > In C- IRP Yi , -syn c- { -1,1}
.

-

① maximize ME
margin

Po, Pu-→ Bp , M

subject to FÉP? =L ,②
③Yi ( B. + pixi , + - - - + ppXip ) I MV-i-lr.in .

③ means each observation will be on te correct side of the hyperplane ( µ zo) with

some cashier ( if µ >o ).
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2 Support Vector Classi�ers
It’s not always possible to separate training observations by a hyperplane. In fact, even if
we can use a hyperplane to perfectly separate our training observations, it may not be
desirable.

We might be willing to consider a classi�er based on a hyperplane that does not perfectly
separate the two classes in the interest of

The support vector classi�er does this by �nding the largest possible margin between
classes, but allowing some points to be on the “wrong” side of the margin, or even on the
“wrong” side of the hyperplane.
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The support vector classi�er xlassi�es a test observation depending on which side of the
hyperplane it lies. The hyperplane is chosen to correctly separate most of the training
observations.

Once we have solved this optimization problem, we classify  as before by determining
which side of the hyperplane it lies.
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The optimization problem has a very interesting property.

Observations that lie directly on the margin or on the wrong side of the margin are called
support vectors.

The fact that only support vectors affect the classi�er is in line with our assertion that 
controls the bias-variance tradeoff.

Because the support vector classi�er’s decision rule is based only on a potentially small
subset of the training observations means that it is robust to the behavior of observations
far away from the hyperplane.
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3 Support Vector Machines
The support vector classi�er is a natural approach for classi�cation in the two-class
setting…

We’ve seen ways to handle non-linear classi�cation boundaries before.

In the case of the support vector classi�er, we could address the problem of possible non-
linear boundaries between classes by enlarging the feature space.

Then our optimization problem would become
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The support vector machine allows us to enlarge the feature space used by the support
classi�er in a way that leads to ef�cient computation.

It turns out that the solution to the support vector classi�cation optimization problem in-
volves only inner products of the observations (instead of the observations themselves).

It can be shown that

Now suppose every time the inner product shows up in the SVM representation above, we
replaced it with a generalization.
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4 SVMs with More than Two Classes
So far we have been limited to the case of binary classi�cation. How can we exted SVMs
to the more general case with some arbitrary number of classes?

Suppose we would like to perform classi�cation using SVMs and there are  classes.

One-Versus-One

One-Versus-All


