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This chapter will focus on methods intended for the setting in which we only have a set of
features  measured on  observations.
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UNSUPERVISED
LEARNING
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X1, … , Xp n

We are not interested in prediction because we have no associated response Y
.

Goats discover interesting things about ✗n -
-

, Xp

- Is there an informative way to plot
the data ?

- can we discover subgroups among the variables or the observations ?
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11 The Challenge of Unsupervised The Challenge of Unsupervised
LearningLearning
Supervised learning is a well-understood area.

In contrast, unsupervised learning is often much more challenging.

Unsupervised learning is often performed as part of an exploratory data analysis.

It can be hard to assess the results obtained from unsupervised learning methods.

Techniques for unsupervised learning are of growing importance in a number of fields.

you new have a good grasp of supervised learning .

If you
are asked to predict a binary response you have many ways to do it :

logistic regression, LDA
,
QDA
,
classification trees

,
RF
,
boosted trees, SUM

and a deer understanding of how to assessquality of your model :
cross-validation

,
validation on a test set

more subjective , no simple goal for the analysis ,
e. g. prediction

-

1stpart of any analysis , before filthy models .

No universally accepted mechanism for performing cross-validation or validation on a test set

Because there is no way for us to
"

check our work
" with no response

variable
.

→ we don't know the true answer !

cancerresearih : assay gene expression levels in 100 patients and look for subgroups

among cancer samples 1- letter understand the disease
.

odineshep.fi#: identify similar groups of shoppers and shew preferential items

that he /she might be particularly interacted in .

My research : Entityresdution : May noisy databases
without a unique identifying attribute→

can we find matches or links?



3

22 Principal Components Analysis Principal Components Analysis
We have already seen principal components as a method for dimension reduction.

Principal Components Analysis (PCA) refers to the process by which principal
components are computed and the subsequent use of these components to understand the
data.

Apart from producing derived variables forr use in supervised learning, PCA also serves
as a tool for data visualization.

When faced with a largest of correlated variables
,

we had principal components to

summarise this set with a smaller number of representative variables that collectively
explain most of the variant in the original data set .

PC direction = directions in feature space along
which original data are highly

variable

PCR = use principal components as predictors in a regression model instead of

original predictors
.

-

-

Unsupervised approach ( involves only features X
, ,
- , Xp, no response y) .

-

visualization of observations or of variables
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2.2.11 What are Principal Components? What are Principal Components?

Suppose we wish to visualize  observations with measurements on a set of  features as
part of an exploratory data analysis.

Goal:Goal: We would like to find a low-dimensional representation of the data that captures as
much of the information as possible.

PCA provides us a tool to do just this.

Idea:Idea: Each of the  observations lives in  dimensional space, but not all of these
dimensions are equally interesting.

n p

n p

✗is . -, Xp

We could do this by examining 2D scatterplots of fire data
which contain nobs

men sued on 2 features.

⇒ (1) = PlP scatterplots , e. g. Y p -10 ⇒ Us plots !

-Too many to look at.

- likely no plot will be informative because they contain asmall fraction of

information present in the data
.

for
visualization

→ in high dimension

-

Then plot the observations in low- dimensional space .

finds low - dimensional representations of a data set that contain as much as

possible of the variation (information ) .

PCA seeks a small number of dimensions that are as interesting as possible .

" interesting " = amount of information along each dimension
.

Each dimension found by PLA is a linear combination of the p features.
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The first principal component of a set of features  is the normalized linear
combination of the features

that has the largest variance.

Given a  data set , how do we compute the first principal component?

X1, … , Xp

n × p X

-

Z
,
= § , ,

✗it a, Xzt . - . + Opr Xp

normalized : É 0/2--1 ( otherwise could result in arbitrarily large variance .

f- I

✗ us . ., pi are called
"

loading 's
"

of the first principal component(
µ , , ,, , , ,,

,
,

, , ,, ,,guy
,

-

④ Assume each variable has been centered (i.e. columns hare mean zero ) - only care about

variances ,

② look for linear combination of of in form

=L
, i
=

"Kirt ¢2,72 + .
-

+ Cfp , Kip

v1 largest sample variance subject to £0K = 1
.

j=i

of
this

course
) .

eigen
decomposition

[outside
scope

i.e. solve the following optimization problem :
←

solved "
"

maximize {EÉ(É,%:xiiJ } subset b- { pi --1.
I =\ I = ,

4111--1%1
I

can write this way

because
columns are

centered
.

⇒ ±Éixi;=o ⇒ d- ÉZi=0 .

⇒ this is the sample variance of Zi, , in- → n .

Z
, , , . . ,

2-
in

are called
"

scores
"

of the first principal component.
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There is a nice geometric interpretation for the first principal component.

After the first principal component  of the features has been determined, we can find the
second principal component, . The second principal component is the linear combination
of  that has maximal variance out of all linear combinations that are
uncorrelated with .

Z1
Z2

X1, … , Xp

Z1

The loading rector 0, defines a direction 1h the feature space along which te data vary Bengt.

If we project n data points onto this direction he get the scores

2-
y ) - -,

2-
In .

=

The second principal cornpone- t scores at

Zai = ¢0,2K il t . . .TO/p2Xip

§a = second principal component loading vector

-22 uncorrelated w/ Z,

⇐

02 orthogonal to ¢, [ % %? '
'" 2D space there is only one p.ss.gg

But for p
>> 2 there are multiple orthogonal options.

To find 2-2 ,
solve similar optimization problem w/ additional constraint

maximize { t.EC?EitaixijY}
¢21s . - - s 2p

subject to ⇐ sij =L and Éoaj • Xii = 0 ( ¢, and 0 , are orthogonal)
j = ,
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Once we have computed the principal components, we can plot them against each other to
produce low-dimensional views of the data.

## 'data.frame':    50 obs. of  4 variables:
##  $ Murder  : num  13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
##  $ Assault : int  236 263 294 190 276 204 110 238 335 211 ...
##  $ UrbanPop: int  58 48 80 50 91 78 77 72 80 60 ...
##  $ Rape    : num  21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 
...

## Importance of components:
##                           PC1    PC2     PC3     PC4
## Standard deviation     1.5749 0.9949 0.59713 0.41645
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336
## Cumulative Proportion  0.6201 0.8675 0.95664 1.00000

## # A tibble: 4 × 5
##   column      `1`    `2`    `3`     `4`
##   <chr>     <dbl>  <dbl>  <dbl>   <dbl>
## 1 Murder   -0.536  0.418 -0.341  0.649 
## 2 Assault  -0.583  0.188 -0.268 -0.743 
## 3 UrbanPop -0.278 -0.873 -0.378  0.134 
## 4 Rape     -0.543 -0.167  0.818  0.0890

str(USArrests)

USArrests_pca <- USArrests |>
  prcomp(scale = TRUE, center = TRUE)

summary(USArrests_pca) # summary

tidy(USArrests_pca, matrix = "loadings") |> # principal components 
loading matrix

  pivot_wider(names_from = PC, values_from = value)

## plot scores + directions

each of the 50 states,
# arrests per 100,000 residents for 3 crimes .

% pop
in
state

living
in
an

urban

→

area
.

PVE →

cumulative PVE fi*#c explain 86.7s% of variability in data

last two PC only explain 13% ⇒ looking at first 2 pretty good summary .

0. ok 10, 44



8 2 Principal Components Analysis

biplot(USArrests_pca)

high.fi?hi+atin
I

1 low crime

low urbanization
1

I

1

crime
related ,

variables
close

1

to
each

other ,

Idifferent
from [ - -

- - -
-
-
- - -
- -
- - - - -

Wyon PT I

⇒ crime variable 1
are correlated .

I

t I
www.xot
" l scores

Z,
M
. Zz

First loading places approx equal weight on 3 crime variables
,
less weight on

Urban Pop .

⇒ this component I measure of rate of serious crimes
.

Second loading places most weight on Urban Pop⇒ X level of urbanization .
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2.2.22 Scaling Variables Scaling Variables

We’ve already talked about how when PCA is performed, the varriables should be
centered to have mean zero.

This is in contrast to other methods we’ve seen before.

Also
,

the results depend on whether variables have been scaled ( to have the sone sd)
.

e. g.
linear regression when he multiply a variable by c

,
the corresponding coefficient is

changed by a factor of Yc .
same data as before ,

✗ didn't scale .

variables are measured

in different units :

crime : # / 100, ooo pple

Urban pop
: percentage

.

Undesirable for PCA to depend on something as arbitrary as scale ⇒ scale each variable to
hare sane sd

.

VNL : all variables are measured on the some units⇒ might not want to sale them
.
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2.2.33 Uniqueness Uniqueness

Each principal component loading vector is unique, up to a sign flip.

Similarly, the score vectors are unique up to a sign flip.

2.2.44 Proportion of Variance Explained Proportion of Variance Explained

We have seen using the USArrests data that e can summarize  observations in 
dimensions using just the first two principal component score vectors and the first two
principal component vectors.

Question:Question: 

More generally, we are interested in knowing the proportion of vriance explained (PVE)
by each principal component.

50 4

-

⇒ software should result in some pr . comp . loading vectors , but sign might flip
.

flipping signs has no effect since direction doesn't change .

Var (Z) = Varfz)

-

How much information in a given data set is lost by projecting the observations onto 1st 2

Prin comp rectors?

p

Total variance in data at : ÉVARCX;) = ⇐ ÷ §,

Xii
5=1

Variance explained by : 1- Ézim = :-& ({ imxiijhmm prin . comp . i
-

-1 j= ,

p

É (¥
,
imxijjh

PVE by out pin comp
: i"¥ (positive qnmtitr)

ij- l in

carminative PVE for I
"
M components : sum PVE first M .
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2.2.55 How Many Principal Components to Use How Many Principal Components to Use

In general, a  matrix  has  distinct principal components.

Rather, we would like to just use the first few principal components in order to visualize or
interpret the data.

We typically decide on the number of principal components required by examining a scree
plot.

n × p X min(n − 1, p)

We are probably not interested in all of ten

-

We wont smallest # possible to get a good understanding of our data .

How many ?

No one simple answer .

-

-

frontier maybe
here.

I
< 1090

not much.L
looking for an

"

elbow
" where plot drops sharply .

This is ad hoc
, but the question of how many is "

enough
"

is not well defined .

depends on problem the data
,
and your goals .

unsupervised Usually plot first two PCs and look for
"

interesting
"

patterns . If the are none
,

probably won't be interesting in later components .EDA
If first two ate interesting , keep looking !

For supervised
p, ,

There is a good way to choose# of components : CV .
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2.2.66 Other Uses for Principal Components Other Uses for Principal Components

We’ve seen previously that we can perform regression using the principal component score
vectors as features for dimension reduction.

Many statistical techniques can be easily adapted to use the  matrix whose columns
are the first  principal components.

This can lead to less noisy results.

n × M

M << p

-

Instead of tufnllnxp datriasit ✗

e. g.
other 1-yes of regression , classification , clustering ( next

since usually the signal is concentrated in first few PCs
.
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33 Clustering Clustering
Clustering refers to a broad set of techniques for finding subgroups in a data set.

For instance, suppose we have a set of  observations, each with  features. The 
observations could correspond to tissue samples for patients with breast cancer and the 
features could correspond to

We may have reason to believe there is heterogeneity among the  observations.

This is unsupervised because

n p n

p

n

We seek to portion observations into distinct groups sothat

- observations within a group are similar

Depends on the
domain !

• observations in different groups are
dissing]

need to define

measurements
,
collected for each tissue sample .

- clinical measurenets
,
e. g.

tumor grade or stage .

- gene expression measurements .

✓
diverse

in
character

-

e.g.
different unknown subtype of cancer .

We are trying to discover structure ( distinct clusters )

This is different from asL problem which has a goal of
•

prediction .
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Both clustering and PCA seek to simplify the data via a small number of summaries.

PCA 

Clustering 

Since clustering is popular in many fields, there are many ways to cluster.

-means clustering 

Hierarchical clustering 

In general, we can cluster observations on the basis of features or we can cluster features
on the basis of observations.

K

- find a low dimensional representation of observations that explain
a

good fraction of variance .

- find homogenous subgroups among observations .

We focus on 2 best known clustering approaches

We seek to partition tie observations into afe # of clusters .

We do not know in advance how many
clusters we want.

Obtain clustering , for 1
, .
.,n clusters and view these in a deidrogram .

① ②

① identify subgroups among
observations

② discover subgroups among features .

We will focus on ①
,
but to perform ② just transpose data matrix ✗ .
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3.3.11 K-Means Clustering K-Means Clustering

Simple and elegant approach to parition a data set into  distinct, non-overlapping
clusters.

The -means clustering procedure results from a simple and intuitive mathematical
problem. Let  denote sets containing the indices of observations in each cluster.
These satisfy two properties:

1. 

2. 

Idea:Idea:

K

K

C1, … , CK

0

We must first specify how many
clusters K

,
then k-means assigns each

observation to one of pre clusters .

e.g. n= too observation clustering into K clusters using p=2 features .

T.io#i is in cluster K ,

it CK

GUGU - - < UCK = { 1
, .
. ,n} .

each observation belongs to one of the K clusters
.

Ck A Ck , =P t k * k
'

the clusters are non overlapping .

good clustering is one for which the within - cluster variation is small
-

as possible .
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The within-cluster variation for cluster  is a measure of the amount by which the
observations within a cluster differ from each other.

To solve this, we need to define within-cluster variation.

This results in the following optimization problem that defines -means clustering:

A very simple algorithm has been shown to find a local optimum to this problem:

Ck

K

Call this W (Ca)

Then we want to solve the problem :

minimize { KEW (G, )}
←

want to puttin
observations

into K

clusters set
,

total within
- cluster variation

is

K -- I minimized .

C
, , - -, CK

Most common way
: squared euclidean distance

many ways ✓ "
"d " "

y.gg#i.i--'WCcia)--l-EElxij-xig-)2
# obs in cluster. Ck .

minimize { É
1- E Écxi

;
-

xi.;)' }
←%"""

K
-

- l
kid in'Eck jiri

Ch . -ACK

This is very difficult to sire exactly : I kn
.
ways to partition nobs into K clusters .

pretty good solution
"

1. randomly assign a number from 1 to K to each observation

these are initial cluster assignments
for observations .

vector of p feature

2. Iterate until cluster assignments stop charging : f means to observations

(a) For each of the K clusters , compute the cluster centroid
" each dusk

.

(b) assign each observation to closest centroid cluster.

Alyo-ithmisgawanteedu-deseasevaheofo.IE?FLITTLE
when cluster assignment stops changing , guaranteed to have reached a local minimum

- ↳ notglobal ! ⇒ clustering depends
on initialization (step 1.7 .

⇒ run algorithm multiple tires from different initializations and choose clustering w/ smallest
objective function .

Problem : we must choose
' K ! ( e. g. "Dunn index

")
.
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3.3.22 Hierarchical Clustering Hierarchical Clustering

One potential disadvantage of -means clustering is that it requires us to specify the
number of clusters . Hierarchical clustering is an alternative that does not require we
commit to a particular .

We will discuss bottom-up or agglomerative clustering.

3.2.13.2.1 Dendrograms Dendrograms

K

K

Kp
ahead of
time .

hierarchical clustering results in a tree -based representation of our observations.

"
"

clusters getting bigger.

-

start w/ each observation is its own cluster and merge
clusters/ observations until all observations

are in a single clustering ( h clusters → 1 cluster) .

Same simulated data as before h= too, p
--2

.÷f_____ a- *
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Each leaf of the dendrogram represents one of the  simulated data points.

As we move up the tree, leaves begin to fuse into branches, which correspond to
observations that are similar to each other.

For any two observations, we can look for the point in the tree where branches containing
those two observations are first fused.

How do we get clusters from the dendrogram?

100
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The term hierarchical refers to the fact that clusters obtained by cutting the dendrogram
at a given height are necessarily nested within the clusters obtained by cutting the
dendrogram at a greater height.

3.3.2.22.2 Algorithm Algorithm

First, we need to define some sort of dissimilarity metric between pairs of observations.

Then the algorithm proceeds iteratively.
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More formally,

One issue has not yet been addressed.

How do we determine the dissimilarity between two clusters if one or both of them
contains multiple observations?

1. 

2. 

3. 

4. 
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3.3.2.32.3 Choice of Dissimilarity Metric Choice of Dissimilarity Metric

3.3.33 Practical Considerations in Clustering Practical Considerations in Clustering

In order to perform clustering, some decisions should be made.

Each of these decisions can have a strong impact on the results obtained. What to do?


