No office hours today.

Chapter 1: Introduction

Statistical learning refers to a vast set of tools for understanding data.

WHAT SCIENTISTS
ACTUALLY NEED:

https://xkcd.com/2341/
Alternative text: I vaguely and irrationally resent how useful WebPlotDigitizer is.
These tools can broadly be thought of as

$$
\begin{aligned}
& \text { Supervised or Unsupervised } \\
& \downarrow \\
& \text { predicting or estinatiry } \\
& \text { an output based on one } \\
& \text { or more inputs. }
\end{aligned}
$$

Examples:
Wage data

Factors related to wages for a group of males from the Atlantic region of the United States. We might be interested in the association between an employee's age, education, and the calendar year on his wage. relationship.

Consider the NCI60 data, which consists of 6,830 gene expression measurements for 64 cancer lines. We are interested in determining whether there are groups among the cell lines based on their gene expression measurements.

cell lines ul same cancer type $^{\text {cha }}$ are close in 20 representation.
and visual clustering (top) was
able to find some of these types.

1 A Brief History

Although the term "statistical machine learning" is fairly new, many of the concepts are not. Here are some highlights:
early $19^{\text {th }}$ century - Legerde ε Gauss publish method of least squares \Rightarrow linear regression. 1936 - Fisher proposes Liker discimmant araby sis.
1940s- logistic regression.
1960; -Bayesian methods.
$\rightarrow 1970$ s - generalized (Drear regression (includes lincoln + logistic).
non-lieer
mates too
co
comp let
1980s - Brieman ¿ Friedman introduce classification and regression frees (random forest, cross-validatim). 1990s - ML boom! Shift to data-driven approach.

- suppert rector machines
- recurrent neural networks.

2000s - Kernel methods, unsupervised learning becomes more popular.

20104
\downarrow "deep" learning.

2 Notation and Simple Matrix Algebra
I'll try to keep things consistent notationally throughout this course. Please call me out if I don't!
n - namer of distinct data points or observations in our sample
p - \# of variables available to us fer making predictions.
ecg. Wage data has 12 variables elected for 3,000 people.

$$
n=3,000
$$

$$
p=12
$$

$x_{i j}$ = value of $j^{\text {th }}$ variable for $i^{\text {th }}$ observation.

$$
\begin{aligned}
& i=1, . ., n \\
& j=1, \ldots, p .
\end{aligned}
$$

\boldsymbol{X} - n xp matrix whose $(i, j)^{\text {th }}$ element is $x_{i j}$
\boldsymbol{y} - variable on which we wish to make aprediction "response"

$$
y_{i}=i t \text { observation of } y \text {. }
$$

a, \boldsymbol{A}, A - scalar, matrix, random variable
a -vector
$a \in \mathbb{R} \leftarrow$ indicates dimension

$$
A \in \mathbb{R}^{r \times s}=r \times s \text { matrix. }
$$

Matrix multiplication must he equal.
Let $A \in \mathbb{R}^{[\times(\hat{d})}$ and $B \in \mathbb{R}^{(d) x s}$ then product of A ard B is " $A B^{\prime \prime} \rightarrow$ multiplying vows of A

$$
(A B)_{i j}=\sum_{k=1}^{d} a_{i k} b_{k j}
$$

$\log \cdot A=\left(\frac{2}{34}\right), B=\left(\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right)$.

$$
\begin{aligned}
& \text { e.g. } A=\left(\begin{array}{ll}
34
\end{array}\right), B=(7) . \\
& A B=\left(\begin{array}{cc}
1 \times 5+2 \times 7 & 1 \times 6+2 \times 8 \\
3 \times 5+4 \times 7 & 3 \times 6+4 \times 8
\end{array}\right)=\left(\begin{array}{cc}
19 & 22 \\
43 & 50
\end{array}\right) \not \text { result is res matrix }
\end{aligned}
$$

$$
\begin{aligned}
& X=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \cdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right) \\
& \left.\underline{x}_{i}=i^{\text {in }} \text { row of } \psi \text { (vector of legng } p\right)=\left(\begin{array}{c}
x_{i 1} \\
\vdots \\
x_{i p}
\end{array}\right) \text {. } \\
& \underline{x}_{i}^{\top}=\left(x_{i 1} \cdots x_{i p}\right) \text { "transpose" }
\end{aligned}
$$

