
Chapter 3: Linear RegressionChapter 3: Linear Regression
Linear regression is a simple approach for supervised learning when the response is
quantitative. Linear regression has a long history and we could actually spend most of this
semester talking about it.

Although linear regression is not the newest, shiniest thing out there, it is still a highly
used technique out in the real world. It is also useful for talking about more modern
techniques that are generalizationsgeneralizations of it.

We will review some key ideas underlying linear regression and discuss the least squares
approach that is most commonly used to fit this model.

Linear regression can help us to answer the following questions about our Advertising
data:

-

-

Ridge regression , lasso , logistic regression , GAMs .

-

-

•
. Is there a relationship btw advertising and

sales ?
i.e. should keeple spend money on ads?

2 . How strong is that relationship?
i.e. how well can we predict sales based on ad budgets ?

3
.

Which media contribute to sales?

4 . How accurately can we predict the effect of each medium on sales ?

5 . How accurately can we predict future sales ?

6. Is the relationship linear?

7
.

Is there synergy among
the ad media ?

i.e. is $50k for TV and $50k for radio
"

better
"

for sales than

$100K on radio or TV alone?
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11 Simple Linear Regression Simple Linear Regression
Simple Linear Regression is an approach for predictiong a quantitative response  on the
basis of a single predictor variable .

It assumes:

Which leads to the following model:

For example, we may be interested in regressing sales onto TV by fitting the model

Once we have used training data to produce estimates  and , we can predict future
sales on the basis of a particular TV advertising budget.

1.11.1 Estimating the Coefficients Estimating the Coefficients

In practice,  and  are unknownunknown, so before we can predict , we must use our training
data to estimate them.

Y

X

β̂0 β̂1

β0 β1 ŷ

-

-

approximately linear relationship between X and Y

-

random error term is Normally distributed

- random error term has constant variance

liver relationship

y -- ftp.T + E

EN N ( Oi 64
↳¥s about error

sales = ④ 1-⑧✗TV to

I
unknown constants ( intercept & slope) .
( " parameters

"
or

" model coefficients
")
.

-

iy = §. + fix
I

particular
TV budget

prediction
of sales

-

"fit the model
"

" train the model
"
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Let  represent  observation pairs, each of which consists of a
measurement of  and .

GGoal:oal: Obtain coefficient estimates  and  such that the linear model fits the available
data well.

The most common approach involves minimizing the least squares criterion.

The least squares approach results in the following estimates:

(x1, y1), … , (xn, yn) n

X Y

β̂0 β̂1

β̂1 =

β̂0 =

training data

In advertising data
✗ = TV ad budget
Y = sales

n= 200 observations

i.e. y-i~ipotp.sc; it, . .,n
We want to find intercept Bo and slope §, sit . resulting lie is "close

"

to n=2oo points .

let Igi =
"

potpie; prediction for y based on
ith valve of ✗

ei
=

Yi -Yi ith
"residual

"

RSS = eft . . .
te? residual sum of squares

choose § . and § , to minimize RSS .

y n

%%i,
K

Use calculus →
take derivatives

set to 0
,
solve for § and} , .

÷⇐_÷¥¥÷" least squares
coefficients

" Ty - § , I where Ty
-

- In ,ÉYi
I = I .Éxi
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We can get these estimates using the following commands in R and tidymodels:

## 
## Call:
## stats::lm(formula = sales ~ TV, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.3860 -1.9545 -0.1913  2.0671  7.2124 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 7.032594   0.457843   15.36   <2e-16 ***
## TV          0.047537   0.002691   17.67   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.259 on 198 degrees of freedom
## Multiple R-squared:  0.6119, Adjusted R-squared:  0.6099 
## F-statistic: 312.1 on 1 and 198 DF,  p-value: < 2.2e-16

library(tidymodels) ## load library

## load the data in
ads <- read_csv("../data/Advertising.csv", col_select = -1) 

## fit the model
lm_spec <- linear_reg() |>
  set_mode("regression") |>
  set_engine("lm")

slr_fit <- lm_spec |>
  fit(sales ~ TV, data = ads)

slr_fit |>
  pluck("fit") |>
  summary()

} general model specification
Yeast squares approadh

← data fame
.

- Uganda "

regrsc Y on X
"

> ~✗
← look into

slr-f.tl>

tidyC) .

i. Opi,



1.2 Assessing Accuracy 5

1.1.22 Assessing Accuracy Assessing Accuracy

Recall we assume the true relationship between  and  takes the form

If  is to be approximated by a linear function, we can write this relationship as

and when we fit the model to the training data, we get the following estimate of the
population model

But how close this this to the truth?

In general,  is not known, so we estimate it with the residual standard error, 
.

We can use these standard errors to compute confidence intervals and perform hypothesis
tests.

X Y

f

σ2

RSE = √RSS/(n − 2)

Y = 5-Cx) + E
t unknown ,

E
mean - zero random error

-

y average
increase in Y associated v1 1- unit increase in ✗

population y = p. + p, ✗ +④
catch all term for what we miss w/ this model

regressionare.
- true relationship 5- may not be linear, maybe othervariables that cause variation in Y

,
measurement error.I

expected value of Y when ✗ = 0

least
y =

"

pot } , ✗squares
line .

measure v1 standard error.

Farid -

- Scipio)=FÉ÷÷⇒J
ftp.i-seiei-i.is?F.---

☐
varlet

T
residual sum of squares
- -

-

98% CI for p,

:

"

p , 1--2%-05.7
95% CI for Po

: pi t-25EC.fi

Hypothesis Test :
Ho : There is no relationship btw ✗ and Y

Ha : There is a ( liner) relationship sty ✗ and y
⇒ Ho :P •

= 0

Ha :p ,
-1-0

? : is § , fagf away from 0 to be confident it is not zero? How far is enough ? depends on
SECpi ) .

Compute P(observing any number equal to HI on larger)=pho.
t=&É÷, Ntn,⇒ Small p-value means highly unlikely to see this t gun

Ho ⇒ reject Ho !
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Once we have decided that there is a significant linear relationship between  and  that
is captured by our model, it is natural to ask

To what extent does the model fit the data?

The quality of the fit is usually measured by the residual standard error and the 
statistic.

RRSESE: Roughly speaking, the RSE is the average amount that the response will deviate
from the true regression line. This is considered a measure of the lack of fit of the model to
the data.

: The RSE provides an absolute measure of lack of fit, but is measured in the units of .
So, we don’t know what a “good” RSE value is!  gives the proportion of variation in 
explained by the model.

## 
## Call:
## stats::lm(formula = sales ~ TV, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.3860 -1.9545 -0.1913  2.0671  7.2124 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 7.032594   0.457843   15.36   <2e-16 ***
## TV          0.047537   0.002691   17.67   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.259 on 198 degrees of freedom
## Multiple R-squared:  0.6119, Adjusted R-squared:  0.6099 
## F-statistic: 312.1 on 1 and 198 DF,  p-value: < 2.2e-16

X Y

R2

R2 Y

R2 Y

slr_fit |>
  pluck("fit") |>
  summary()

ibe between 0 and I

always !

Advert
"'t

data to
exit

a :p:* i=.
.
.

②
SE

9
pi = proportion of variability

ihy

explained by a liker
relationship w/ ✗
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22 Multiple Linear Regression Multiple Linear Regression
Simple linear regression is useful for predicting a response based on one predictor
variable, but we often have more than onemore than one predictor.

How can we extend our approach to accommodate additional predictors?

We can give each predictor a separate slope coefficient in a single model.

We interpret  as the “average effect on  of a one unit increase in , holding all other
predictors fixed”.

In our Advertising example,

βj Y Xj

- we could run separate SLR for each predictor
How to make single prediction for y based on lards of all predictors?

Also
,
each model would ignore the other predictors . . . but what if they are related ?

↳ misleading results .

Solution
:

assoyYIp.ve
f f predictor

7 = PotPi , + faxat - . . + Ppxp 1- 6

-

-

sales = pot p.TV + Pa
radio + psnews paper + E
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2.2.11 Estimating the Coefficients Estimating the Coefficients

As with the case of simple linear regression, the coefficients  are unknown
and must be estimated. Given estimates , we can make predictions using the
formula

The parameters are again estimated using the same least squares approach that we saw in
the context of simple linear regression.

## 
## Call:
## stats::lm(formula = sales ~ ., data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8277 -0.8908  0.2418  1.1893  2.8292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.938889   0.311908   9.422   <2e-16 ***
## TV           0.045765   0.001395  32.809   <2e-16 ***
## radio        0.188530   0.008611  21.893   <2e-16 ***
## newspaper   -0.001037   0.005871  -0.177     0.86    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8956 
## F-statistic: 570.3 on 3 and 196 DF,  p-value: < 2.2e-16

β0, β1, … , βp

β̂0, β̂1, … , β̂p

# mlr_fit <- lm_spec |> fit(sales ~ TV + radio + newspaper, data = ads) 
mlr_fit <- lm_spec |> 
  fit(sales ~ ., data = ads) 

mlr_fit |>
  pluck("fit") |>
  summary()

-

-

now
instead

Ñ=Ñ+Éa+ .
- +pig .

-

of a
line ,

we
't alternative Wayt

fitting
"

hyperÑ
"
"

feelinewmodespeu-f-cat.masbyo.ee#Fttbhddd
.

Tress sales tedatafawe .

mercy other
column

in data fare.

Do
ii. ☐$2
§]
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2.2.22 Some Important Questions Some Important Questions

When we perform multiple linear regression we are usually interested in answering a few
important questions:

1. 

2. 

3. 

4. 

2.2.12.2.1 Is there a relationship between response and predictors? Is there a relationship between response and predictors?

We need to ask whether all of the regression coefficients are zero, which leads to the
following hypothesis test.

This hypothesis test is performed by computing the -statistic

H0 :
 

Ha :

F

F =

Is atleast of the predictors Xn .- , Xp useful in predicting response?

Do alf predictors help to explain 4 ? or only a subset of predictors useful
?

How well does the model fit the data?

Given a set of predictor
values what response rake should we predict ? and how

accurate is that prediction .

i. lope

P, =p5- -- -

= Pp = 0

at least one Pj is non -Zero : j --1 . . ,p

variance
-

ctsp.gs?I?p#NFexplained bymodel p, n- p- l

T
varianceunexplained

If F is large ( much larger than 1) , evidence against null Ho .

i.e. evidence there is some relationship .
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2.2.2.22.2 Deciding on Important Variables Deciding on Important Variables

After we have computed the -statistic and concluded that there is a relationship between
predictor and response, it is natural to wonder

Which predictors are related to the response?

We could look at the -values on the individual coefficients, but if we have many variables
this can lead to false discoveries.

Instead we could consider variable selection. We will revisit this in Ch. 6.

2.2.2.32.3 Model Fit Model Fit

Two of the most common measures of model fit are the RSE and . These quantities are
computed and interpreted in the same way as for simple linear regression.

Be careful with using these alone, because  will always increasealways increase as more variables are
added to the model, even if it’s just a small increase.

## 
## Call:
## stats::lm(formula = sales ~ ., data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8277 -0.8908  0.2418  1.1893  2.8292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.938889   0.311908   9.422   <2e-16 ***
## TV           0.045765   0.001395  32.809   <2e-16 ***
## radio        0.188530   0.008611  21.893   <2e-16 ***
## newspaper   -0.001037   0.005871  -0.177     0.86    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8956 
## F-statistic: 570.3 on 3 and 196 DF,  p-value: < 2.2e-16

F

p

R2

R2

# model with TV, radio, and newspaper
mlr_fit |> pluck("fit") |> summary()

-

8
-

How to overfitting?
Use test data ! Chis .

"""
hd "
""

is * I

p-valves .

pif
-
F test

Ho :p ,
= -

- - Pio

Ha : Pj -1-0 jet . - if
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## 
## Call:
## stats::lm(formula = sales ~ TV + radio, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.7977 -0.8752  0.2422  1.1708  2.8328 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.92110    0.29449   9.919   <2e-16 ***
## TV           0.04575    0.00139  32.909   <2e-16 ***
## radio        0.18799    0.00804  23.382   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.681 on 197 degrees of freedom
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8962 
## F-statistic: 859.6 on 2 and 197 DF,  p-value: < 2.2e-16

It may also be useful to plot residuals to get a sense of the model fit.

# model without newspaper
lm_spec |> fit(sales ~ TV + radio, data = ads) |>
  pluck("fit") |> summary()

ggplot() +
  geom_point(aes(mlr_fit$fit$fitted.values, mlr_fit$fit$residuals))

↳
pi barely decreased valve when we took out newspaper ⇒

hot contributing much .

Fyi - Ji

random
noise←÷ :*

.

around 0
,

o q
pattern in residuals ⇒ missing something in

my systematic relation

my assumptions
are not met about E.

iy

can
also

check

for
Normality

of
E

using 99
plot .
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33 Other Considerations Other Considerations

3.3.11 Categorical Predictors Categorical Predictors

So far we have assumed all variables in our linear model are quantitiative.

For example, consider building a model to predict highway gas mileage from the mpg data
set.

## # A tibble: 6 × 11
##   manufacturer model displ  year   cyl trans      drv     cty   hwy 
fl    class 
##   <chr>        <chr> <dbl> <int> <int> <chr>      <chr> <int> <int> 
<chr> <chr> 
## 1 audi         a4      1.8  1999     4 auto(l5)   f        18    29 
p     compa…
## 2 audi         a4      1.8  1999     4 manual(m5) f        21    29 
p     compa…
## 3 audi         a4      2    2008     4 manual(m6) f        20    31 
p     compa…
## 4 audi         a4      2    2008     4 auto(av)   f        21    30 
p     compa…
## 5 audi         a4      2.8  1999     6 auto(l5)   f        16    26 
p     compa…
## 6 audi         a4      2.8  1999     6 manual(m5) f        18    26 
p     compa…

head(mpg)

library(GGally)

mpg %>% 
  select(-model) %>% # too many models
  ggpairs() # plot matrix

-

what to do when Xj

is categorical?

t
makesPl plots to
look at

each pair of variables
in adataframe
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looks at type of
variable art chooses appropriate plot type
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To incorporate these categorical variables into the model, we will need to introduce 
dummy variables, where  the number of levels in the variable, for each qualitative
variable.

For example, for drv, we have 3 levels: 4, f, and r.

## 
## Call:
## stats::lm(formula = hwy ~ displ + cty + drv, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6499 -0.8764 -0.3001  0.9288  4.8632 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.42413    1.09313   3.132  0.00196 ** 
## displ       -0.20803    0.14439  -1.441  0.15100    
## cty          1.15717    0.04213  27.466  < 2e-16 ***
## drvf         2.15785    0.27348   7.890 1.23e-13 ***
## drvr         2.35970    0.37013   6.375 9.95e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.49 on 229 degrees of freedom
## Multiple R-squared:  0.9384, Adjusted R-squared:  0.9374 
## F-statistic: 872.7 on 4 and 229 DF,  p-value: < 2.2e-16

k − 1
k =

lm_spec |>
  fit(hwy ~ displ + cty + drv, data = mpg) |>
  pluck("fit") |>
  summary()

-

← 1<=3

g.ci ,
= { • if ith car is front WD

0 if ith car is not front WD

Xia = { tf if its car is RWD

if ith car is not RWD .
Bo = avg hwy mpg for

4WD us .

Yi
=

Potfpci , +Pax,; +q
. = {

% +A + Ei if
ith car is fwp

po + pa + Ei if
Thor is RUD ⇒

P,
= difference marg hwy mpg

Bo +Ei if ith or is 4WD between FWD { 4WD cos.

Pz= difference in arg hwy mpg
- gµyiw①Ñ

""

between RWDÉYWDCRS.

→ ☐
→ ☐
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3.3.22 Extensions of the Model Extensions of the Model

The standard regression model provides interpretable results and works well in many
problems. However it makes some very strong assumptions that may not always be
reasonable.

Additive AssumptionAdditive Assumption

The additive assumption assumes that the effect of each predictor on the response is not
affected by the value of the other predictors. What if we think the effect should depend on
the value of another predictor?

## 
## Call:
## stats::lm(formula = sales ~ TV + radio + TV * radio, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3366 -0.4028  0.1831  0.5948  1.5246 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.750e+00  2.479e-01  27.233   <2e-16 ***
## TV          1.910e-02  1.504e-03  12.699   <2e-16 ***
## radio       2.886e-02  8.905e-03   3.241   0.0014 ** 
## TV:radio    1.086e-03  5.242e-05  20.727   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9435 on 196 degrees of freedom
## Multiple R-squared:  0.9678, Adjusted R-squared:  0.9673 
## F-statistic:  1963 on 3 and 196 DF,  p-value: < 2.2e-16

lm_spec |>
  fit(sales ~ TV + radio + TV*radio, data = ads) |>
  pluck("fit") |>
  summary()

linear model
=

*-
constant error variance

uncorrelated errors w/ predictors ✗ }
captured enough predictors
{ relationship to response in model

.

interaction
f term

0
Y = Pot B, X ,

+ pzxztfgx.la + E

= pot ( p , + Pia)X ,
+ Pia + E

Thanyes w/ respect to Xa valves.

?⃝
.

for sigtuna
.

←
B) significantly

different from 0 .

9. ←

pi = .gg without interaction
, sign it ant increase⇒ better fit

* If we add interaction terms important to keep original variables ,
otherwise very confusing

to interpret the results .

"

an increase of $1000 in radio advertising will be associated with an increase in sales of
(ÑtÑtV)×/000 :

29 1- lol ✗ TV units
.
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Alternatively:

## ══ Workflow [trained] 
══════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: linear_reg()
## 
## ── Preprocessor 
────────────────────────────────────────────────────────────────
## 1 Recipe Step
## 
## • step_interact()
## 
## ── Model 
───────────────────────────────────────────────────────────────────────
## 
## Call:
## stats::lm(formula = ..y ~ ., data = data)
## 
## Coefficients:
## (Intercept)           TV        radio   TV_x_radio  
##    6.750220     0.019101     0.028860     0.001086

rec_spec_interact <- recipe(sales ~ TV + radio, data = ads) |>
  step_interact(~ TV:radio)

lm_wf_interact <- workflow() |>
  add_model(lm_spec) |>
  add_recipe(rec_spec_interact)

lm_wf_interact |> fit(ads)
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LLinearity Assumptioninearity Assumption

The linear regression model assumes a linear relationship between response and
predictors. In some cases, the true relationship may be non-linear.

ggplot(data = mpg, aes(displ, hwy)) +
  geom_point() +
  geom_smooth(method = "lm", colour = "red") +
  geom_smooth(method = "loess", colour = "blue")

-

maybe

✓ not linear.

How to include nonlinear terms in the model?
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## 
## Call:
## stats::lm(formula = hwy ~ displ + I(displ^2), data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6258 -2.1700 -0.7099  2.1768 13.1449 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  49.2450     1.8576  26.510  < 2e-16 ***
## displ       -11.7602     1.0729 -10.961  < 2e-16 ***
## I(displ^2)    1.0954     0.1409   7.773 2.51e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.423 on 231 degrees of freedom
## Multiple R-squared:  0.6725, Adjusted R-squared:  0.6696 
## F-statistic: 237.1 on 2 and 231 DF,  p-value: < 2.2e-16

3.3.33 Potential Problems Potential Problems

1. Non-linearity of response-predictor relationships 

2. Correlation of error terms 

3. Non-constant variance of error terms 

4. Outliers

lm_spec |>
  fit(hwy ~ displ + I(displ^2), data = mpg) |>
  pluck("fit") |> summary()

(could alternatively mutate df)

[
" identity

"

significant

1 polynomial)
be careful throwing higher order terms → this win lead to overfitting É verybad_ predictions

on the edges of your spare
.

diagnosis : yrs
. each predictor

.

solution :
- add polynomial term .

(for now)
.

plot residuals vs . fitted
see pattern .

&
-

transform predictor.

diagnosis
understand how data is collected solution :

- use models formulated for correlated errors
time series? spatial data? (not this class).

- incorporate variables that capture te dependence in

diagnosis the systematic relationship

plot residuals vs . fitted solution:
be funnel pattern → transform Y . Try logy or Yr

diagnosis solution:
plot data Is your data wrong

? i.e. error in

collection ? fix it.

otherwise - maybe you are missing a predictor?
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44  -Nearest Neighbors-Nearest Neighbors
In Ch. 2 we discuss the differences between parametric and nonparametric methods.
Linear regression is a parametric method because it assumes a linear functional form for 

.

A simple and well-known non-parametric method for regression is called -nearest
neighbors regression (KNN regression).

Given a value for  and a prediction point , KNN regression first identifies the 
training observations that are closest to  ( ). It then estimates  using the average
of all the training responses in ,

K

f(X)

K

K x0 K

x0 N0 f(x0)
N0

set.seed(445) #reproducibility

## generate data
x <- rnorm(100, 4, 1) # pick some x values
y <- 0.5 + x + 2*x^2 + rnorm(100, 0, 2) # true relationship
df <- data.frame(x = x, y = y) # data frame of training data

knn_spec <- nearest_neighbor(mode = "regression")
for (k in seq(2, 10, by = 2)) {
  knn_spec |>
    fit(y ~ x, data = df, neighbors = k) |>
    augment(new_data = df) |>
    ggplot() +
    geom_point(aes(x, y)) +
    geom_line(aes(x, .pred), colour = "red") +
    ggtitle(paste("KNN, k = ", k)) +
    theme(text = element_text(size = 30)) -> p
    
  print(p)
}

lm_spec |>
  fit(y ~ x, df) |>
  augment(new_data = df) |>
  ggplot() +
    geom_point(aes(x, y)) +

easy to fit
make strong assumptions , what if they are wrong?

easy to interpret -

parametric method will perform poorly .
can perform hypothesis tests .

-

← # of neighbors

← training data
.

5- (%) = ¥ Sisi
g

"itNo
value to he predicted at.

↳ allows us to gtsdmnumbers everytime .

*:-[
← K --2,46 , 8,10

← formula
- -

adds predicting
(also

residuals
if applicable

) .
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    geom_line(aes(x, .pred), colour = "red") +
    ggtitle("Simple Linear Regression") +
    theme(text = element_text(size = 30)) # slr plot

"

EY
0

①missing quadratic relationship
.

as k 9
,
KNN gets smoother


