Chapter 6: Linear Model Selection &
Regularization

In the regression setting, the standard linear model is commonly used to describe the
relationship between a response Y and a set of variables X1,..., X,
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The linear model has distinct advantages in terms of inference and is often surprisingly
competitive for prediction. How can it be improved?
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We can yield both better prediction accuracy and model interpretability:
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1 Subset Selection

We consider methods for selecting subsets of predictors.

1.1 Best Subset Selecfion.

To perform best subset selection, we fit a separate least squares regression for each
possible combination of the p predictors. (t ) _ P9 modds w/ exa dhy 4 ,a/LJA'ofof‘ of
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We can perform something similar with logistic regression. Pz 1O =% tsoo il !

1.2 Stepwise Selection
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For computational reasons, best subset selection cannot be performed for very large p. —*

best subed may slso svfer Wi Plcv"’y» because ~[ o [V‘J‘/ searh space
Wty e 'G"‘('{ Cruﬁ\’ﬂg lﬂ'ﬁ“l V"‘""L‘lg et wwk or '{”"l""“o 0\0"""» Lb\‘r ry_rGrM FnarLa u/*{.). A{/f?«

Stepwise selection is a computationally efficient procedure that considers a much smaller
subset of models.

Forward Stepwis ion:
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1.3 Choosing the Optimal Model 3
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2 Shrinkage Methods

The subset selection methods involve using least squares to fit a linear model that contains
a subset of the predictors. As an alternative, we can fit a model with all p predictors using
a technique that constrains (regularizes) the estimates.
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Shrinking the coefficient estimates can significantly reduce their variance!
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2.1 Ridge Regression

Recall that the least squares fitting procedure estimates 3y,. .., 8, using values that
minimize
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The tuning parameter A serves to control the impact on the regression parameters.
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2.1 Ridge Regression 5

The standard least squares coefficient estimates are scale invariant. )
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In contrast, the ridge regression coefficients 5, can change substantially when
multiplying a given predictor by a constant. -

e.q. Say we have an fhoome Vi *He, I O Lollees vs. @‘ﬁwusmfs of dollers.
D = loeo x@
e [l T Som o ﬂiw/w{ loef, Jrms Ah(S cbaa il ot sfmp/:? resulf ¢
the wedh T eshlvde t0 d‘ﬂ‘gv by o Jutfr éﬁ (00o.
=> X @f} ﬂfe"h wef oy 01 9 but cleo o dmfaJ/? of X;
(Ml( eitn J’-f‘fo/ m e m% of «Tler p&o&‘dnfso

Therefore, it is best to apply ridge regression after standardizing the predictors so that
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6 2 Shrinkage Methods

Why does ridge regression work?
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e
Or'k The lasso is an alternative that overcomes this disadvantage. The lasso coefficients 3

2.2 The Lasso 7

2.2 The Lasso

Ridge regression does have one obvious disadvantage.
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This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when p is very large.
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As with ridge regression, the lasso shrinks the coefficient estimates towards zero.
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As a result, lasso models are generally easier to interpret.

e




8 2 Shrinkage Methods

Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not? One can show that the lasso and ridge regression coefficient estimates solve the
following problems

In other words, when we perform the lasso we are trying to find the set of coefficient
estimates that lead to the smalled RSS, subject to the contraint that there is a budget s for
how large 2:5:1 |8;] can be.



2.3 Tuning

2.3 Tuning
We still need a mechanism by which we can determine which of the models under

consideration is “best”.

For both the lasso and ridge regression, we need to select A (or the budget s).

How?



3 Dimension Reduction Methods

So far we have controlled variance in two ways:

We now explore a class of approaches that

We refer to these techniques as dimension reduction methods.
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2.3 Tuning 11

The term dimension reduction comes from the fact that this approach reduces the problem
of estimating p + 1 coefficients to the problem of estimating M + 1 coefficients where

M < p.

Dimension reduction serves to constrain g}, since now they must take a particular form.

All dimension reduction methods work in two steps.



12 3 Dimension Reduction Methods

3.1 Principle Component Regression

Principal Components Analysis (PCA) is a popular approach for deriving a low-
dimensional set of features from a large set of variables.

The first principal component directions of the data is that along which the obervations
vary the most.

We can construct up to p principal components, where the 2nd principal component is a
linear combination of the variables that are uncorrelated to the first principal component
and has the largest variance subject to this constraint.
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3.1 Principle Component Regres...

The Principal Components Regression approach (PCR) involves

Key idea:

In other words, we assume that the directions in which X3, ..., X, show the most
variation are the directions that are associated with Y.

How to choose M, the number of components?

Note: PCR is not feature selection!
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14 3 Dimension Reduction Methods

3.2 Partial Least Squares

The PCR approach involved identifying linear combinations that best represent the
predictors Xi,...,X

p*

Consequently, PCR suffers from a drawback

Alternatively, partial least squares (PLS) is a supervised version.

Roughly speaking, the PLS approach attempts to find directions that help explain both the
reponse and the predictors.

The first PLS direction is computed,

To identify the second PLS direction,

As with PCR, the number of partial least squares directions is chosen as a tuning
parameter.



4 Considerations in High Dimensions

Most traditional statistical techniques for regression and classification are intendend for
the low-dimensional setting.

In the past 25 years, new technologies have changed the way that data are collected in
many fields. It is not commonplace to collect an almost unlimited number of feature
measurements.

Data sets containing more features than observations are often referred to as high-
dimensional.
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16 4 Considerations in High Dimen...

What can go wrong in high dimensions?
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Many of the methods that we’ve seen for fitting less flexible models work well in the high-
dimension setting.

When we perform the lasso, ridge regression, or other regression procedures in the high-
dimensional setting, we must be careful how we report our results.



