
Chapter 6: Linear Model Selection &Chapter 6: Linear Model Selection &
RegularizationRegularization
In the regression setting, the standard linear model is commonly used to describe the
relationship between a response  and a set of variables .

The linear model has distinct advantages in terms of inference and is often surprisingly
competitive for prediction. How can it be improved?

We can yield both better prediction accuracy and model interpretability:

Y X1, … , Xp

Y = pot B , ✗ it . . . + PpXp + E.

typically fit w/ least squares .

Upcoming : more general
models (non-liner .

replace least squares with alternative filthy procedures .

-

predid-ionacouracy-i.it the true relationship is = linear
,
least squares will have low bias

-

If n >> p ⇒ also have low variance ⇒ perform well on test data .

But if h is not much larger than p ⇒ high variability ⇒ poor performance .

If p
> n : no longer a unique solution ⇒ variance = a ⇒ cannot be used at all !

good : reduce variance without adding too much bias
.

imodelintoprtability : often many
variables used in a regression are not in factassociated

with the response .

By removing them ( setting -1=0) we could obtain a more easily interpretable model
.

Note : least squares will hardly ever result in ^pi=o .

⇒ need variable selection .

Same ideas apply to logistic regression .
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11 Subset Selection Subset Selection
We consider methods for selecting subsets of predictors.

1.11.1 Best Subset Best Subset

To perform best subset selection, we fit a separate least squares regression for each
possible combination of the  predictors.

Algorithm:

We can perform something similar with logistic regression.

1.21.2 Stepwise Selection Stepwise Selection

For computational reasons, best subset selection cannot be performed for very large .

Stepwise selection is a computationally efficient procedure that considers a much smaller
subset of models.

Forward Stepwise Selection:

p

p

-

Selection
.

=wFÉy 1 predictor, etc .

I • lit Mo denote null model - no predictors .

2. For 1<=1
, -

-

, p

(a) Fit all (F) models that contain K predictors.

(b) Pick the best of those (MK ) . Best is defiled by drss (TRY .

3. Select a single best model from Mo , . . . , Mp using CV error
,

cp.tk/Blc,oradJ:;Efa,Ru?aspr,R29always .Why can't we use Ñ for step 3? why might we not want to do this ? Filthy 2
'
models !

p = 10 ⇒ 1000 models !

→ impossible
with p 240 .

Best subset may also
suffer when plage because v1 a large search space

we can find spurious good models that work on training data but perform poorly w/ test data .

-

tart_ÉÉwd add predictors one at a tire until all predictors are in tire model.

choose the " best
" from these .

b. let Mo denote the null model - no predictors,

2. for K -- 0
,
- -

y p
- •

(a) Consider all p - k
models that augment the predictors in Mk with

1 additional
predictor.

(b) choose The best among those p - k and call it Mra ( tr? 1Rss).

3 . Select a single best model from Mo
, -
-

,
Mp using CV error

, Cp , Aic /no , adj R?

- Now we fit It E Cp - K) = It PHI models
.
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Backward Stepwise Selection:

Neither forward nor backwards stepwise selection are guaranteed to find the best model
containing a subset of the  predictors.

1.1.33 Choosing the Optimal Model Choosing the Optimal Model

 

AIC & BIC 

Adjusted  

Validation and Cross-Validation

p

Cp

R2

Begin w/ full model and take predictors away one at a tire

until we get to null mode.

1
.
let Me devote the full model - contains all p predictors.

2. For K =p, p - y . . ., 1 :

(a) consider all kurodds that contain all predictors except one of predictors
in Mk ( K- l predicts).

(b) choose beat among
them and call it My-1 ( 9K RSD.

3. Select the single best model from Moi - > Mp using CV error , Cp , Atc/ BIC , adj R ?

* -

forward selection can be used when p >n ( but only up to a -1 predictors ,
not p !) .

Need away way tsbiok
" best " model that depends on tesfer ( training error net a good

-

estimate of this )
↳ either estimate

this directly or adjust training errors
for

model size.

= In ( RSS + 2d E)
T ← estimate of variance four full

model .

# of predictors in subset model

pÑ add penalty to training error (Rss) to adjust for underestimate of test error.

gin
"

as d9 , Cp 9 (choose model w/
lowest valve) .

"Insult can use for maximum likelihood fits

> Aic : ¥1 Rss +2dm

Bic = ¥ (Rss tlogcndci)

choose model w/ low valve
,
bin ce logG) >

2 for a > 7 => heavier penalty on models

4 many
variables

⇒ results in smaller models .
C least squares models)

R2 = 1- R¥ always 9 as d9

-

Aditi -- t - F¥TI
choose model w/ highest adj R?

- Directly estimate test error w/ validation or CV and choose model w/ honestest.
error .

-

Very general , can Be used w/ any
model

,
even when it's not clear howmany

"predictors " we
hare

.

Now have fast computers ⇒ these are preferred.
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22 Shrinkage Methods Shrinkage Methods
The subset selection methods involve using least squares to fit a linear model that contains
a subset of the predictors. As an alternative, we can fit a model with all  predictors using
a technique that constrains (regularizes) the estimates.

Shrinking the coefficient estimates can significantly reduce their variance!

2.12.1 Ridge Regression Ridge Regression

Recall that the least squares fitting procedure estimates  using values that
minimize

Ridge Regression is similar to least squares, except that the coefficients are estimated by
minimizing

The tuning parameter  serves to control the impact on the regression parameters.

p

β1, … , βp

λ

=
↳ shrink estimates towards zero

.

¥pÉider filthy !

Rss = Écyi - Po - ÉB;XiÑ
in

residual
sum of squares .

Inote we
are not penalizing Po

-

pÉ Gi - Po - §
,

Piri;)
"

+ + Epi = pigs +⑦§" wne.FI?ErpagFize the relationships

(mean valve of response
when

i = , I "

y xi, = - ÷xip=o )

7>-0 tuning parameter
( determined separately of the

filthy procedure).

trades off 2 criteria :
minimize RSS to fit data well

7¥.PT shrinkage penalty small when p ; 's close to zero ⇒
shrinks estimates
towards zero.

-

when 7=0 penalty has
no effect and ridge regression = least squares .

As 7→✗ , impact of the penalty grows and p^R→ o
.

Ridge regression will produce a different set of coefficients for each penalty ( JI ) .

Selecting a good 7 is critical ! Homer? Cross validation !
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The standard least squares coefficient estimates are scale invariant.

In contrast, the ridge regression coefficients  can change substantially when
multiplying a given predictor by a constant.

Therefore, it is best to apply ridge regression after standardizing the predictors so that
they are on the same scale:

β̂
R

λ

Multiplying ×; by a constant c leads to as¥ÉÉ estimates by a factor of t
-

t regardless of how jtn predictor is scaled , ×;§; will remain the same

-

e.g. say we have an income variable in ① dollars us. ② thousands of dollars .

① = 1000 ✗②

due hi the son of squared coef . terms this charge will not simply result in

the coefficient estimate to change by a factor of 1000.

⇒ xjÑ% depended not only on 7
,
but also on the scaling of Kj

(may even depend on te scaling of other predictors ! )

T.es#deviatimofone-.Iij--
Ñtdv

. of jtn predictor .

*
wmiif.fi?i.reipe
↳ ① standardize data

1. 5 tune model to choose 7 (using CV)

② fit ridge regression on training data using chosen 7
.
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Why does ridge regression work?

Because of the bias - variance trade-off !

As 79
,
flexibility of the ridge regression f-t d

d variability and 9 bias

MSE = variance + bias
'

"

variance .

In situations where relationshipbetween response and predictors a linear

least squares estimate
will harelowbias .

{
when p

is almost as large as n ⇒ least squares has high variability !

§
If

p >n least squares
doesn't even have a unique solution !

ridge regression can still perform well in these Gcenaios by trading off a small amount

of bias for decrease in variance .

⇒ ridge regression works very well in high variance scenarios .

Cost advantage over subset selection

b/c for fixed ✗
, only fit ore

model ! ( very fast model to fit) .

Ridge regression improves predictive performance .

Does it also help us w/ interpretation? No
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2.2.22 The Lasso The Lasso

Ridge regression does have one obvious disadvantage.

This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when  is very large.

The lasso is an alternative that overcomes this disadvantage. The lasso coefficients 
minimize

As with ridge regression, the lasso shrinks the coefficient estimates towards zero.

As a result, lasso models are generally easier to interpret.

p

β̂
L

λ

Unlike best subset , forward/backward selection (generally sleet model w/ a subset of variables )

ridge regression
will include all p variables in the final model.

penalty 7¥.fi will shrink Pj → o
,
but p; -1-0 (

unless ✗ = A) !

-

-

We will always have all variables in the model , whether
there is a relationship or not.

÷÷÷÷Shrinkage
and

iÉ(Yi - Po-ÉPixij)2 1- a £1 pit = Rss + ×§
" P ". & " ""

j = ,

w
e

, penalty
Vs.

(§
,

B? =
"Ila penalty

")
.

l
, penalty also has the effect of forcing some coefficients to be exactly zero

when 7 sufficiently large !

⇒ much like best subset selection lasso perform variable selection !

-

The lasso yields state models
- models 4 only a subset of the variables

.

Again , selecting a good 7 is critical .
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Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not? One can show that the lasso and ridge regression coefficient estimates solve the
following problems

In other words, when we perform the lasso we are trying to find the set of coefficient
estimates that lead to the smalled RSS, subject to the contraint that there is a budget  for
how large  can be.

s

∑p

j=1 |βj|

P

lasso : minimize { É
,

tyi - Po -⇐Pix,;-)
' } subject to FÉI Bit ± s

⇒ problems.
Ride : minimize { §

,
Cy:-p. - { p; >g.)y g.gg,, y ,§p! }

""trained •Pt""-at'm

equivalent to

•per
formulations j= ,

v1 7 .

Constraints

-

-

st

When s is very large
,

this is not much of a constraint ⇒ coef
.

estimates can be very large .

similar for Ridge as well.

But why does the lasso result in coef . estimates exactly = 0? let p=z .

132 ^ 132 ^

contours of contours of

Rss pass¥\ pg,
i.
credit \

pg,
i.
credit

☒é=,
regression

" BqIii;;:;=
""" • 'a'so µ

Pi
-

Pi
"
pi + p
' E s

solution to both ridge and Lass is the first point the ellipses (Rss) contact the constraint regions .

Since ridge is a circle ( no sharp putts ) , intersection doesn't generally occur on the axis.

Lasso has corners on each axis ⇒ ellipse often will intersect at the axis ⇒ at least one of the

lfwebe1ieretheareprditorsthtpwY(wejustdonqµI!Eh÷÷,eMdñZro##
s Lasso

will perform better than ridge .( bias t variance )

If not ( everything is important) , ridge regression will perform better .
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2.2.33 Tuning Tuning

We still need a mechanism by which we can determine which of the models under
consideration is “best”.

For both the lasso and ridge regression, we need to select  (or the budget ).

How?

λ s

for subset we have Cp, Alc /Bic , adjusted Ñ, CVe
→ equivalently .

Tenali ration
CV ! parameter

① choose a grid of 7 valves.

← loocv or K
- fold CVR

② Compute CV error for each 7

③ select 7 for which error is smallest

④ refit mode using
all available training data and selected 7 .

NoTE_ : still very important
to scale variables 29 ,

-
- , Xp for lasso to all hare

St. dev . = 1
.
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33 Dimension Reduction Methods Dimension Reduction Methods
So far we have controlled variance in two ways:

We now explore a class of approaches that

We refer to these techniques as dimension reduction methods.

① using a subset of original variables
-

best subset, forward/backward selection , lasso

② shrinking coefficients towards Zero

-

ridge , lasso

these methods all defined using original predictor variables 34 , . , Xp .

① transform the predictors

② then fit least squares on transferred variables.

-

① let Z, , . .,Zmµ represent M < p
linear combinations of our original predictors.

2-
m

= É
,

imxj

for constants ¢1m , - .] pm ,
m =L, . . , M .

② Fit the linear regression model using
least squares

M

Yi
= O_O + ⇐ O-mZ.int Ei i --1 , - , n

E T
regression coefficients .

If Ofjm chosen well
,
this can outp-m least squares.
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The term dimension reduction comes from the fact that this approach reduces the problem
of estimating  coefficients to the problem of estimating  coefficients where 

.

Dimension reduction serves to constrain , since now they must take a particular form.

All dimension reduction methods work in two steps.

p + 1 M + 1
M < p

βj

9 D-0,0$ , - - y QM

Papi , Pai - -, Bp

Not÷ M P P

EQMZ in = £0m I jmxij = É!jXij = EP; Icij
m= , my j =L ji , MH j =\

M

p;
= ⇐ 0m¢ im

⇒ special case of original linear regression model ( with Bj constrained)

↳ can bias coefficient estimates. (trade-off lover
vwtance

, hopefully) .

↳ If p > n ( pron) selecting Map
can

reduce variance
.

① transformed predictors are obtained ( get Gim's) .

② model is fit using M transformed predictors from ! .

The sheet in of cfjm 's car he done multiple ways ,
we will talk about2 .
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3.3.11 Principle Component Regression Principle Component Regression

Principal Components Analysis (PCA) is a popular approach for deriving a low-
dimensional set of features from a large set of variables.

The first principal component directions of the data is that along which the obervations
vary the most.

We can construct up to  principal components, where the nd principal component is a
linear combination of the variables that are uncorrelated to the first principal component
and has the largest variance subject to this constraint.

p 2

How
to choose

2- ,, .
- ,
ZM

(one
way
) -

PCA is anyÉÉ for reducing the dimension of an Axp data matrix.

µ,
axon

.

The 1st principal components are obtained by projecting be
data onto the 1 " principal component direction.-1

" '"
"

a point is projected onto a line by finding the

✗
, point on the line closest to the point.

^
x projected the lie

.

out of every possible liver combination of ✗ , and X,

smh tht find 0/5 =p choose so that ¥÷*Var ( ⑧ " ( x , - In +0/2,1×2-51) is maximized .
⇒ Zip § " (Xii -5C

,
)t cfzitxzi - IN for it

, - , n are principal component scores .

=
⇒ perpendicular to 1st PC direction !

v.
+
pc

direction
.

÷:*

|
,

µ.
pc

direction
= y

dimension
along

which

data vary
the

most

= \line
"closest

" to

all observations

( least squares
line !) .

U
projected

onto

PC
directions

The 1st PC contain, the most information → Pth PC contains the least
.
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The Principal Components Regression approach (PCR) involves

1. 

2. 

Key idea:

In other words, we assume that the directions in which  show the most
variation are the directions that are associated with .

How to choose , the number of components?

Note: PCR is not feature selection!

X1, … , Xp

Y

M

Construct first M principal components Z , , -.,Zµ

Fit a linear regression model w/ Z, , - izm
as predictors using least

squares .

Often a small # of PC suffice to explain most of the variability in ✗ (data)
,

as well as the relationship 4 the response.

-

This is not guaranteed to be true , butoften works hell in practice.

If this assumption holds
, fitting PCR will lead to better results than filthy least squares

on ✗ n - r , Xp , because we can mitigate overfitting ( lower variability) .

M can be thought of as a tuning parameter
⇒ use CU method to choose !

as MY p ,
PCR→ least squares ⇒ bias d but variance 9

,

will see the U-shape in the
test MSE

each of the M principal components used in the timer regression is a linear combination of

EÉ !

⇒ while PCR works well to reduce variance
,
it does not produce a sparge model .

( More like ridge regression than the lasso) .

Note recommend standardizing predictors Xu . -Xp to each have St. dev =L before getting
the principal components .



14 3 Dimension Reduction Methods

3.3.22 Partial Least Squares Partial Least Squares

The PCR approach involved identifying linear combinations that best represent the
predictors .

Consequently, PCR suffers from a drawback

Alternatively, partial least squares (PLS) is a supervised version.

Roughly speaking, the PLS approach attempts to find directions that help explain both the
reponse and the predictors.

The first PLS direction is computed,

To identify the second PLS direction,

As with PCR, the number of partial least squares directions is chosen as a tuning
parameter.

X1, … , Xp

nÉ
We identified these directions in an unsupervised way ( response 4 not used to determine the

directions .

There is no guarantee that the directions that best explain te predictors will also be the best

directions to explain the response .
( dimension reduction) .

① identity new features Z, , - , 2-m linear combinations of features

② fit linear model C least squares) using transformed predictors .

PLS also uses Y (not just ✗ ) to find linear compilations of ✗
, ,
- ,Xp ( i.e. uses YÉ ✗ to find

¢1m, - , 4pm
¥5kation , m--1 , -

-

, M.

⑧ standardize the p predictors ( all have st
.
der =D .

① set each Gj , equal to coefficient from simple linear regression Yu X;
" proportional to

"

since the coefficients from SLS of You Xj ✗ Cor (Y
,
X;) , PLS places highest

weight on variables most strongly related tothe response.

✗j NZ,

④ regress each variable ✗ a . .,Xp on Z
,
and take residuals ( rji-xii-tji.it,

-→
n)

j =\ , - -, P
'

② Compute 2-2 by setting each is equal to the coefficient from simple linear regression

You g.
← residuals

from! .

The residuals r, , - , rp I remaining information not explained by 1st PLS direction
.

⇒

Generally , standardize predictors And response before performing PLS.

In practice , Pls usually performs no letter than ridge or PCR .

↳ supervised nature of problem does reduce bias
,
but also often increases variance ⇒

not always
an improvement.
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44 Considerations in High Dimensions Considerations in High Dimensions
Most traditional statistical techniques for regression and classification are intendend for
the low-dimensional setting.

In the past 25 years, new technologies have changed the way that data are collected in
many fields. It is not commonplace to collect an almost unlimited number of feature
measurements.

Data sets containing more features than observations are often referred to as high-
dimensional.

n → p

This is because throughout history of the field
,
the bulk of scientific problems requiring statistics

have been low dimensional .

e. g. Think about predicting a person 's
BP based on age , gender, and BMI .

P=3
,
could have thousands of patients , n⇒p.

-

( p my large)

But n can be limited due to cost.

e.g.
rather than predicting BP on age , gender, BMI might also collect measurements for tz million

SNPs → individual DNA mutations cannon in population

Now PK 500,000 , but they are expensive to collect 8. night only here ~ 200 of them
available!

e.go
consider trying tr predict

online shopping patterns .

We could treat all search terms in the

person 's month-long bruising history as features in a
"

bag - of-words " model .

But we might only have access to a few hundred users who have consented to share

train search history .

For a gin user
, features void be absence (o) or presence (1) of each potential search term.

p large !
-

-

n y
300.

classical approaches ( like least squares) are not appropriate
in this setting .

why ?

bias - variance trade off
and or e. fitly .

⇒ we need to be extra careful when n xp or nap .
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What can go wrong in high dimensions? ( going to talk about least square , but same
issues arise for

logistic regression and LDA
,
etc )

If p
is as large as or larger than n

, fegwdless of if there is a relationship between Yard ✗
,

least squares will yield a set of coefficients that result in a perfect fit to be data ( residuals =o ! )
.

A-20
, p = 1 (+ intercept) n > p

⇒ not perfect
fit.

n--2
, p =L It intercept) , n= # coefs ⇒ perfect fit !

the resulting
model will

mostlilalg
perform poorly
on training
data .

simulated data A- 20 and regression performed with between 1 and 20 features
.

features were generated w/ NO relationship to response !

µgñ%w f-*dafter class
←

training Ms
E

decreasing w/

\ "" Mh""
era thoughi womanish :p

even though
the

is No relationship ✓ to response .

to response .

W
test MSE

will show
not good

result because
here

is no relationship !

⇒ we must be very careful
when analyzing data with many predictors .

• Always evaluate performance on indeprdet test set (or
Cu)

.

variable
• consider regularization , subset selection , dimension

reduction .
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Many of the methods that we’ve seen for fitting less flexible models work well in the high-
dimension setting.

1. 

2. 

3. 

When we perform the lasso, ridge regression, or other regression procedures in the high-
dimensional setting, we must be careful how we report our results.

-

regularization or shrinkage plays a key role in high dinersinl problems .

appropriate tuning parameter
selection is critical for good predictive performance .

the test error tends to increase as p 9 unless the additional features we truly

[ associated w/ response .

this is due to the course of dimensionality

adding additional signal features will improve a fitted model but adding noise will
deteriorate the fitted model

⇒ 9 test error .

9 dimension ⇒ 9 risk of overfitting due to noise looking important by chance .

-

In high dimensional setting , it is more likely variables will be correlated

⇒ some variables in the model could be written as dinar combination of other variables

in the model
.


