
Chapter 7: Moving Beyond LinarityChapter 7: Moving Beyond Linarity
So far we have mainly focused on linear models.

Previously, we have seen we can improve upon least squares using ridge regression, the
lasso, principal components regression, and more.

Through simple and more sophisticated extensions of the linear model, we can relax the
linearity assumption while still maintiaining as much interpretability as possible.

e

linen models are relatively easy to describe and implement.

Advantages : interpretation & inference

Disadvantages : can
have limited predictive power because linearity is almost always

an approximation .

-

improvement obtained by reducing complexity of linear model ⇒ lowering variance of estimates .

Still a linear model ! Can only k improved so much .

or relationship btw y and ✗

→ extensions of
linear model .

① Polynomidreyrin : adding extra predictors that are original variables raised to a power
we
have

already
talked

ago
mis e.g. Cubic regression uses ✗

,
X2
,
✗
'

as predictors , e. g. y = potpie + pie+ PETE
ore. 1- Non-linear fit

* easy to interpret
- with large powers polynomial can take strange shapes (especially near the boundary) .

② stepfund-ions-i.cat the range of a variable into K distinct regions to produce a

categorical variable . Fit a piecewise constant function to ✗
.

③ Regression splines :
-

more flexible than polynomials & step functions (extends both)
idea : cut the range of ✗ into K distinct regions & polynomial is fit within each region.

polynomials are constrained so that they are smoothly joined .

⑨ Generalized additive models : extend above to deal w/ multiple predictors.
-

We will start v1 predicting Y on ✗ ( one predictor ) and extend to multiple [①) .

exp (ftp.xtfx?...+ppxi.PG--ilx)--Note-:We can talk regression or classification w/ above ideas
e.g. Logistic regression

It exp (ftp.xtp#-" + BED .
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11 Step Functions Step Functions
Using polynomial functions of the features as predictors imposes a global structure on the
non-linear function of .

We can instead use step-functions to avoid imposing a global structure.

For a given value of , at most one of  can be non-zero.

X

X C1, … , CK

-

-

idea: break range of ✗ into bins and f-t a different constant in each bin
.

details : ① Create cut points c
, , - → Ck in te range of ✗ .

② Construct KH new
variables

Cocx)=I( ✗ < G) " dummy variables
" Note for any

✗ ,

C
,
lx) = # (G ± ✗ < G) } ↳"""""+' "

+ ↳%) =\

÷ because ✗ must be in exactly 1- ihtrral .

CKCXI = ICCKEX) leave out Cocx) because it is

③ Use least squares to fit a diner model C
,
Cx)
,
. .
. ,
C,d×F Grillet to ihdndryar intercept.

Y
=

pot picked t . . . tpkckcxt E.

When ✗ < C
, ,
all predictors C

, , . , CK = 0 .

⇒ po interpreted as mean value of Y when ✗ <G.

pj represent the average increase in response for ✗ c- [Cj
,
G-+, ) relative to ✗ <C, .

We can also fit te logistic regression model for classification

p(y= , 1×1 = expfpotficiwt.tk.GG#ltexpCpotp,c,Cx7t...+pkGdN?
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Example: Wage data.

yearyear ageage maritlmaritl racerace educationeducation regionregion jobclassjobclass healthhealth health_inshealth_ins logwagelogwage wagewage

2006 18
1.
Never
Married

1.
White

1. < HS
Grad

2.
Middle
Atlantic

1.
Industrial

1.
<=Good 2. No 4.318063 75.04315

2004 24
1.
Never
Married

1.
White

4. College
Grad

2.
Middle
Atlantic

2.
Information

2.
>=Very
Good

2. No 4.255273 70.47602

2003 45 2.
Married

1.
White

3. Some
College

2.
Middle
Atlantic

1.
Industrial

1.
<=Good 1. Yes 4.875061 130.98218

2003 43 2.
Married

3.
Asian

4. College
Grad

2.
Middle
Atlantic

2.
Information

2.
>=Very
Good

1. Yes 5.041393 154.68529

Wage data for a group of 3000 male workers in Mid-atlantic region.

④ I

of

¥:;÷*
p a p a

9=30 eggo
ci" ciao .

logistic regression modeling

prob of being a high earner gin age
.

Unless the re ratrd cutpoints in predictor,

piec wise
constant functions can miss

trends.
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22 Basis Functions Basis Functions
Polynomial and piecewise-constant regression models are in fact special cases of a basis
function approach.

Idea:Idea: 

Instead of fitting the linear model in , we fit the model

Note that the basis functions are fixed and known.

We can think of this model as a standard linear model with predictors defined by the basis
functions and use least squares to estimate the unknown regression coefficients.

X

have a family of function or transformations that can be applied to a predictor ✗

b.CH, bzcx), - → 4<1×7 .

Yi
= Botfibitxilt . . - tpkbklx.tt Ei

-

( we choose them ahead of time)
.

erg . Polynomial regression bjlxi) = Xii j=1, . . , d

e. g. step function : bjcxi ) = I( cj Ex:< cjti)

-

⇒ we can use all our inference tools for linear models, eog.se ( 1^3 ;) and

F- statistic for model significance .

Many alternatives exist for basis functions :

e.g.
Wavelets

,
fourier series, regression splines (next .
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33 Regression Splines Regression Splines
Regression splines are a very common choice for basis function because they are quite
flexible, but still interpretable. Regression splines extend upon polynomial regression and
piecewise constant approaches seen previously.

3.13.1 Piecewise Polynomials Piecewise Polynomials

Instead of fitting a high degree polynomial over the entire range of , piecewise
polynomial regression involves fitting separate low-degree polynomials over different
regions of .

For example, a pieacewise cubic with no knots is just a standard cubic polynomial.

A pieacewise cubic with a single knot at point  takes the form

Using more knots leads to a more flexible piecewise polynomial.

In general, we place  knots throughout the range of  and fit  polynomial
regression models.

X

X

c

L X L + 1

- -

start with

e. g. fitting cubic polynomial over intervals break up global rage .

T
knots

.

•

-

•

ie
.

fit two different polynomialsPo, + Bi, Xi t fax? + Bux? 1- Ei if Xie cYi
=

{ to the data ,

one on subset for
XE C

P02 + Paki + Baik? + pzzx? + Ei
if Xi > c

one on subset for X
> c-

each polynomial can be fit using least squares.

If we place K knots⇒ fit KH polynomials
(doesn't have to be cubic .

This leads to Cd 1- 1)(Ltl) degreesof freedom
in the model

(# parameters we have to fit to complexity / flexibility) .
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3.3.22 Constraints and Splines Constraints and Splines

To avoid having too much flexibility, we can constrain the piecewise polynomial so that the
fitted curve must be continuous.

To go further, we could add two more constraints

In other words, we are requiring the piecewise polynomials to be smooth.

Each constraint that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, bu reducing the complexity of the resulting fit.

The fit with continuity and 2 smoothness contraints is called a spline.

A degree-  spline is d

-

i.e. there cannot be a jump at the knots
.

① first derivatives of the piecewise polynomials are continuous at the knots

② 2
'd
derivatives of the piecewise polynomials are continuous at the knots

-

t

-

a piecewise degree - d polynomial with continuity in derivatives upto degree

d- 1 at each knot .

.ge
"

µ¥vfwf 'jump

0 to

f- 50

piecewise cubic polynomial piecewise cubic polynomial cubic spline
V1 continuity cts + cts 1st & 2nd derivatives
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3.3.33 Spline Basis Representation Spline Basis Representation

Fitting the spline regression model is more complex than the piecewise polynomial
regression. We need to fit a degree  piecewise polynomial and also constrain it and its 

 derivatives to be continuous at the knots.

The most direct way to represent a cubic spline is to start with the basis for a cubic
polynomial and add one truncated power basis function per knot.

Unfortunately, splines can have high variance at the outer range of the predictors. One
solution is to add boundary constraints.

d

d − 1

We can use the basis function idea to represent a regression spline

Yi = pot p , bite;) + pabalxilt.r-tpu-sbu-slx.ltEi
→

cubic splint for appropriate basis functions b
, ,
.
-

, bit,
y
x,
Ii >is

u , y
OF"

-

-

hlx
,4) = (x - g)

'

*
= {4-
Ñ if x > 9 where 4 is a knot.
0

on.

⇒ Yi
= ftp.xitpik?tBzx?t&Pz+jhGci,9 ;) + Ei

j= ,

→ This vill lead to discontinuity in only the 3rd derivative at each 9; if continuous

function and 1st and 2nd derivatives at each knot 9J .

df : bet 4 ( cubic spline w/ L knots) .

⇒
"

natural spline "

require § function to be linear at the boundary ( where ✗ is smaller than the smallest

knot and bigger than biggest knot) .

additional constraint produces more stable predictions at the boundaries.
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3.3.44 Choosing the Knots Choosing the Knots

When we fit a spline, where should we place the knots?

How many knots should we use?

3.3.55 Comparison to Polynomial Regression Comparison to Polynomial Regression

regression spline is most flexible in regions that contain a
lot of knots (coefficients etage more

rapidly)
⇒ place knots where he think function will vary rapidly and

less where more stake
.

more common in practice : place them uniformly .

to do this we choose desired degrees of freedom 1Aexibility) & use software to

automatically place corresponding# of knots at uniform quartiles of data.

-

<⇒ how flexible do we want our function?

Use CV ! Use L gives smallest CV error!

Regression splines (and natural splines) often give superior results to polynomial regression .

Polynomial regression must use high degree to achieve flexible fit leg . X 's)
,
but

Regression splines introduce flexibility through knots ( but degree fixed ) ⇒ more stability Cesp . d-boundaries) .

polynomial w/

✓ degree 15

i
natural cubic spline
w/ df = 15.

high degree of polynomial Ito
achieve flexibility) at the borders produces undesirable

result.

The natural spline w/ same flexibility
( dt) still looks reasonable .
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44 Generalized Additive Models Generalized Additive Models
So far we have talked about flexible ways to predict  based on a single predictor .

Generalized Additive Models (GAMs) provide a general framework for extending a
standard linear regression model by allowing non-linear functions of each of the variables
while maintaining additivity.

4.4.11 GAMs for Regression GAMs for Regression

A natural way to extend the multiple linear regression model to allow for non-linear
relationships between feature and response:

Y X

These approaches can be seen as extensions of simple linear regression

Y = pot pit E

-

-

flexibly predict Y on the basis of several predictors ✗ , ,
-
-Xp .

still additive models .

-

can be used for regression or classification

-

-

linear regression : Yi = pot pixiri + . . .
+ ppxpit Ei

idea : replace each linear component pjxji with a
smooth nonlinear function of xji

p

⇒ GAM : Yi
=

pot Efjfxiii + Ei
j -4

=

pot f ,H, ;) tfzlxz.lt .
. .

+ fptxpi) t Ei

" additive
" because we calculate a separate fj for each xj and add them topper!

possibilities for fj
:

- identity ( leads
to linear regression)

- polynomial function
- regression spline ( natural spline

)

- smoothing splines
- local linear regression]

not ↳wed ,
but the textbook oh

.

7. g- 7.6

for details .
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The beauty of GAMs is that we can use our fitting ideas in this chapter as building blocks
for fitting an additive model.

Example: Consider the Wage data.

-

quantitative
y
categorical

wage = pot f.ly#-fzTaye7tfz( education) +s
there f

,
is natural spline w/ Udf

Fa is natural spline w/ Sdf

f-
3 is identity of dummy variables created from education (piecewiseconstant) .

easy
to fit w/ least squares by choosing appropriate basisfm-t.ms .

×É s.im
"

¥
T
recession?

fitted
fruition |

pointy;
filled relationship btw each variable and the response .

-

age : holding year and education fixed
, wage

is low for young people and

older people , highest
for intermediate ages.

- year
: holding age and education fixed, wage tends to increase w/ year

(inflation ?)

- education : holding year and age fixed , wage teds to
increase with education.

We could have easily replaced fj with different functions and gotten a d-Hat

fit . just needto change basis and use least squares . ( choose fast fit using CV - lowest
error) .
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Pros and Cons of GAMs

Advantages:
- G Ams allow nonlinear fit fj to each Xj (model non - linear relationship, that linear regression

will wish .

• allow for mere accurate predictions if there truly is a non-linear relationship.

• additive model⇒ can still examine the effect of each Xj on Y individually
while holding all others fixed .

⇒ G Ams provide a useful representation for inference / interpretation.

- summarize flexibility of model by df.

Limitations:
- model is restricted to be additive

i.e important interactions can be missed

solution : as with linear regression ,
we can manually add iterative terms ly

including additional predictors of the form X; ✗ ✗ k

or add interaction functions of the farm f;k(xi, 247 .

in
two

dimensional splines
( not covered

).

For fully general models , we
need to look for even more flexible approaches

like random forests or boosting (next .

6AM , provide a useful compromise beten
linear and fully nonparametric models.
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4.4.22 GAMs for Classification GAMs for Classification

GAMs can also be used in situations where  is categorical. Recall the logistic regression
model:

A natural way to extend this model is for non-linear relationships to be used.

Example: Consider the Wage data.

Y

( generalizations
exist

to

assume
Y takes

0
or 1

more
categories)

.

log (¥¥) = Pot Bix , t.it Pip
"
log odds as linear function of predictors

log-odds as non - liner¥É_

log (P¥¥ =

pot f. (xp + . -+ fplxp)

9
logistic regression 6AM .

let Y = wage > $250k

We could f-t a GAM

log (P⇒ = pot f. (year + fz( age) + fg(education)
natural spline natural split piecewise constant for each level .

df = 5 df = y

y
can't see

but

increasing 4
eduction.

f f
hot

much
data here

looking at scales , age + education
hate more effect on P ( high earner 1×7 then year.


