
Chapter 8: Tree-Based MethodsChapter 8: Tree-Based Methods
We will introduce tree-based methods for regression and classification.

The set of splitting rules can be summarized in a tree “decision trees”.

Combining a large number of trees can often result in dramatic improvements in prediction
accuracy at the expense of interpretation.

Credit: http://phdcomics.com/comics.php?f=852

Decision trees can be applied to both regression and classification problems. We will start
with regression.

⇒

→
nonparametricsupervised methods

.

y ,
categorical

→
quantitative y .

These involve segmenting the predictor space into a number of simple regions

To make a prediction for an observation
,
we hill nn the men or mode of pre

training observations in the regions to which it belongs .

-

- simple and useful for interpretation
- not competethe w/ other supervised approaches leg . lasso) for prediction .

→
bagging , random

forests
,

boosting .

-

-

2

11 Regression Trees Regression Trees
Example:Example: We want to predict baseball salaries using the Hittters data set based on
Years (the number of years that a player has been in the major leagues) and Hits (the
number of hits he made the previous year).

The predicted salary for players is given by the mean response value for the players in that
box. Overall, the tree segments the players into 3 regions of predictor space.

start
with

q

We could make a series ofÉ
to vote regions and predict salary as te

mean in each region .

according to a tree fit to this data (more on how

in a minute) .

Years - "s µ÷;;÷
"" ""

÷
a
Rz Rs

R
, R}

"""

.

Rz

4.5
probably /definitely an oversimplification

but
'

easy to interpret and has a

nice graphical
representation .

termind•8Y Ri
, Ra, R, = teminaln.de# or leave of the tree

points along the tree where space is split = irternaln.de#

segments of tree
that connect nodes = brandies .

interpretation: Years is the most important factor
in determining salary

↳ given that
a prayer is experienced , # hits

in praiou year plays a role in his salary : 9
hits
,
9Salay .

↳ given that a player is not experienced, # hints does not affect your salary .

3

We now discuss the process of building a regression tree. There are to steps:

1.

2.

How do we construct the regions ?

The goal is to find boxes that minimize the RSS.

The approach is top-down because

The approach is greedy because

R1, … , RJ

R1, … , RJ

→
quantitative

z

→
set of possible valves for ✗

, , - , Xp

Divide

predickrspace.infoJ distinct and non -overlapping regions R
, , . ., R,

Predict

for every observation
that falls into my '

" Rj he make the same prediction,

he mean of th response Y for training valves in Rj

How to divide the predictor space?

regions could have anystape : but that is too hard [to do & interpret)

⇒ divide predictor space onto high dimensional rectangles orboxer
mean response

= ;É¥µYi - Ñfr;)
"

where Yrj of training data
in box Rj

Unfortunately it is computationally infeasible to consider

every possible partition .

⇒ take top-down , greedy approach called recursirebinaysph.lt#

We start at the top of the tree (where all observations belong b- a single region)

and successively split the predictor space .

↳ each split is indicated via two new branches in the tree .

at each step of be building process , be
best split is made at thatpwtialastep

↳ not looking ahead to make a split that
will lead to a bitter tree later.

4 1 Regression Trees

In order to perform recursive binary splitting,

The process described above may produce good predictions on the training set, but is likely
to overfit the data.

A smaller tree, with less splits might lead to lower variance and better interpretation at
the cost of a little bias.

A strategy is to grow a very large tree and then prune it back to obtain a subtree.T0

① select predictor and cutpoint sit. splitting the predictor space in to regions

{ ×:X; Cs } and {
× : XJZS] leads hi greatest possible reduction in Rss .

T
region of predict- space where xj takes valves < s

↳ We consider all possible ✗ , , .
-

, Xp and all possible cutpoints then choose predictor tcntpoint

so tree has lowest RSS .

i. e. consider all possible half planes R
•
(i. s) = { xlxjcs} , Rzlj , s)

-

- {× :X,-2s] .
we seek j and s that minimize sly i-yp.pt E ly ,

- -jpg ← can be quickly done if P not
i :xitRfj , s) i :X

,

-c-Rzcj , s) too large.

⑧Repeat process looking
for next best j , s combo

,
but instead of splitting entire space, we will split

Rilj
,
s) and Ralj , s) to minimize Rss.

③ Continue until stopping criteria is met (i.e. no region
contains more than 5 observations)

.

④ predict using mean of training obs in the region to which test obs falls .

because our resulting tree vill be too complex .
⇒ less regions .

-

Idea : Only split free if it results in a large enough drop in RSS
.

9
badidea- because a seemingly worthless split early in tree can be followed by

a good split !

Bettering
:

-

How to prune the tree?

V1 : select a subtree that leads to lowest test error rate→
could use CV to estimate

error for every possible
subtree

,

bit

this is expensive flange
of possible

subtrees) .

solution: " cost complexity pruning ", aka " weakest link pruning
"

consider a sequence of trees indexed by a nonnegative tuning parameter 2

For each valve of 4 , 7 a corresponding subtree TC To St .

I lyi-iyp.MY + ✗ ITI is as small as possible
A- I ✗ ifRm w

of terminal notes in the tree .

when
2=0

Rm -- with terminal node region

µ
F-To

rfrm : predicted response for Rm
gg ⇒ price to PAY

"

✗ controls tradeoff between subtree 's complexity & f.+ to training data
having

more
torrid

nodes
9
⇒ smaller

tree.

Select ✗ via CV
,
then use full training dataset t chosen ✗ to get subtree .

5

Algorithm for building a regression tree:

① Use recursive binary splitting to grow a large tree on training data set,
stopping when each terminal node has fewer than some minimum F- of observations

② Apply lost complexity pruning to the large tree to get a segue of best trees

as a function of d.

③ Use K - fold CV to choose 2
.

Divide training data into K folds , for each 1<=1 , . .,K

(a) Repeat steps ① and② on all but Kth fold

(b) Evaluate MSE on data in Ktn fold

Average results for each valve of 2 and pick ✗ to minimize CV error .

④ Return to subtree from ② that corresponds to ✗ from ③ .

F-te.fi/-qrsk-M-biusnsigqeusE-spt.

① large
tree To

subtly¥=2
É
E f

0

(how many splits)

6

22 Classification Trees Classification Trees
A classification tree is very similar to a regression tree, except that it is used to predict a
categorical response.

For a classification tree, we predict that each observation belongs to the most commonly
occurring class of training observation in the region to which it belongs.

The task of growing a classification tree is quite similar to the task of growing a
regression tree.

It turns out that classification error is not sensitive enough.

When building a classification tree, either the Gini index or the entropy are typically used
to evaluate the quality of a particular split.

Recall from regression trees , predicted response for an observation is

given by the med response of training obs
.

in that region.I -

the

mode_
We are often also interested in class proportions that fall into each terminal node .

↳ this can give us some idea of how reliable the prediction is

e.g.
terminal node of 100% class 1 us

.

55% class 1

48% class 2
.

Use binary recursive splitting to grow a classification tree

but RSS cannot be used as criterion for splitting .

Instead natural alternative is classification error rate
= fraction of training obs that do not belong to most common class

= 1- moxlfimk)
K

← prop of training obs in nth region from K" class.

- for tree growing .
Preferred measures :

more
shii" ① Gini Index G = É Ñmk (I - Ñmk) measure of total variance across K classes.

µ
node E- I

↳ takes small valves if all pink's are close to o or 1.⇒ measure of
"node purity

"

the
" { dG ⇒ nodes contain observations prints

purity from one class
.

visitation ② Entropy
D= - É Ink lot pink

ever
Ñ"

1<=1

↳ will take robes rear zero if pink 's close to 0 or 1. ⇒ ID ⇒ nodes more
"

pure
"

note
Gini and Entropy are actually quite similar numerically neither Gini nor

entropy works
well w/ unbalanced

data . There

Any of the 3 methods can also be used for pruning .

are • to options
out the to

split on .

If prediction accuracy of find tree is the goal
,

classification error rate should be used.

7

33 Trees vs. Linear Models Trees vs. Linear Models
Regression and classification trees have a very different feel from the more classical
approaches for regression and classification.

Which method is better?

3.13.1 Advantages and Disadvantages of Trees Advantages and Disadvantages of Trees

p

ecg . linear regression : g-a) = potE. 4- B-

M

"

regression ties : fan = Ecm I(✗ c- Rm) . where R
, , . .. Rn is a position of ke

m
-
- l

predictor space.

It depends on the problem
- If the relationship btu/ features and response is approximately linear, then a linear

model will

outperform a tree .

- If the relationship is highly her - linear , decision tree may
be better

.

Trees nice interpretation / visualization .

Advantages Disadvantages
-

easy to explain , even easier than
- do not have some level of predictive performance

linear regression . us other methods we have seen .

G.) - some people think decision trees
-

Not robust : small change in data can have
more closely mirror human decision making .

large effect m fitted tree .
- can be displayed graphically [high variability) .(good for non experts)

- can handle categorical predictors

www.y.m.am, ..,m[ve can aggetate many trees to try and

improve this !

8

44 Bagging Bagging
Decision trees suffer from high variance.

Bootstrap aggregation or bagging is a general-purpose procedure for reducing the
variance of a statistical learning method, particularly useful for trees.

So a natural way to reduce the variance is to take many training sets from the population,
build a separate prediction model using each training set, and average the resulting
predictions.

Of course, this is not practical because we generally do not have access to multiple training
sets.

✗
"

Bootstrap a-ggrgat.in
"

-

i.e. if we split data in half randomly ,
fit decision tree to both halves

, resulting trees cold

be quite different
.

vs .
low variance will yield similar results if applied repeatedly to different samples from

some

population .

↳ linear regression when n→ p .

=
-

Recall : for a given St of n independent observations Z, , . ., Zn each v1 variance 6
>
< • .

Var (E) = Var (:-&,zi)
"

÷É
.

Varzi = ÷Éñ=÷

i.e. averaging a set of observations reducesrarianu .

-

i.e. take B training sets
.

calculate §
'

Gc) , . . , §
'Gcl .

obtain low -variance statistical learning model :

Fava Got = ÷Éf^%y .
b--1

Collecting training data can he expensive .

Instead we could take repeated samples (w/ replacement) from training data set.

(these are called 1' bootstrapped
"

training datasets because we are
"

pulling ourselves up by our bootstraps
")

.

↳ assumes empirical dsn in sample is similar to population dsn , i. e. have representative sample .

Then we could #Fur method on bth bootstrapped training data st to get

§ * (b)(x) and average

^

fsaglx) =
1- £ § "b) Gc)

.

B its-1

4.1 Out-of-Bag Error 9

While bagging can improve predictions for many regression methods, it’s particularly
useful for decision trees.

These trees are grown deep and not pruned.

How can bagging be extended to a classification problem?

4.4.11 Out-of-Bag Error Out-of-Bag Error

There is a very straightforward way to estimate the test error of a bagged model, without
the need to perform cross-validation.

-

To apply to regression trees : ① construct B trees using bootstrapped datasets.

② average resulting predictions .

-

⇒ each tree has low bias & high variance
.

Averaging trees reduces variance by combining hundreds or thousands of trees !
↳ won't lead to our filthy (but can be slow) .

(averaging no longer an option) .

for a given test observation , record the class predicted by each bootstrapped the and take

a majority vote : overall prediction is class occurs most often .

-

key : trees are repeatedly fit to bootstrapped subsets of observations
.

⇒ on average
each tree uses I 3- of the data to fit the tree

.

← has tr do w/ prob . of being slated in the bootstrap.

i.e. I } of observations are Not used to fit the tree. (out - of - bug 6013 obsnat.ms)
.

idea: we can predict response for the ith observation using all trees in which
that observation was 0013 .

This will lead to 11313 predictions for ith observation
.

Then average (or majority vote) of these predictions to get asiykootspredid-in-teithobsenat.in.

We can use each of the 0013 predictions for each training obs to obtain 0013 MSE (or 0013
classification

which is an estimate of test error ! error]

This is valid because only use predictions from models (trees) that did not

use that observation i- filthy !

10 4 Bagging

4.4.22 Interpretation Interpretation

Bagging typically results in improved accuracy in predictions over a single tree .

But it can be difficult topt be resulting model !

↳ one of the biggest strengths of decision trees I

↳ no longer possible to hp-set
the resulting model using a single tree.

⇒ no longer clear which variables are the mostimpotat to predict the

response.

⇒ bagging improves prediction at be expense of interpretability .

What can
we do?

We can obtain an overall Sunray of importance of each predictors using RSS (or Gini
for Gini) lhdex)

.

- record total amount RSS is decreased due to splits over a given predictor

averaged over B trees .

-

a large value indicates an important predictor .

11

55 Random Forests Random Forests
Random forests provide an improvement over bagged trees by a small tweak that
decorrelates the trees.

As with bagged trees, we build a number of decision trees on bootstrapped training
samples.

In other words, in building a random forest, at each split in the tree, the algorithm is not
allowed to consider a majority of the predictors.

The main difference between bagging and random forests is the choice of predictor subset
size .m

-

But when building the trees
,
a random sample of m predictors is chosen from

the full set of p predictors as split candidates .

↳ the split is only allowed to un one of these m predictors.

↳ fresh sample of predictors taken at
each split .

↳ typically ma Tp .

Why?
Suppose there is one strong predictor in data at and a number of moderately strong predictors .

In bagging , most or all trees
will select the strong predictor as the top split.

⇒ all of the bagged trees will look quite similar
.

⇒ predictions will be highly correlated

and averaging highly correlated valves does not lead to much variance reduction !

Random forests overcome this by fore ing each split to consider a subset of predictors .

⇒ on average (p - m)/p of the splits will not even consider the strong predictor ⇒
other predictors
will have a

chance !

If m =p ⇒ random forest = bagging .

Using a small m will typically help when we have a lot of correlated prediction.

- As with bagging , we will not hare over f-Hiy with large is .

- And we can examine the importance of each variable in the same way .

12

66 Boosting Boosting
Boosting is another approach for improving the prediction results from a decision tree.

While bagging involves creating multiple copies of the original training data set using the
bootstrap and fitting a separate decision tree on each copy,

Boosting does not involve bootstrap sampling, instead each tree is fit on a modified version
of the original data set.

* very
popular

right
now

(see
Ada

boost
and ✗a

boost) .

-

idea is a general approach can be applied to many models.

Boosting grows trees sequentially using information from previously grown trees
.

-

- -

Regression :

idea - the boosting approach learns slowly to avoid are filthy .

> Given a current model we fit a decision
tree to residuals from current model and

add the decision tree to the fitted function to update .

> each tree is very small
(just a few terminal nodes)

⇒ slowly improving § in areas
where it is not currently performing well

.

soit
"
"

① Élx)=o and ri = yi
Yi in training setj.n.i.rer.at

ensemble
knit

"

word
"

(a) Fit a tree Fb y d splits (dtl terminal nodes) to training (x, r)

(b) Update § by adding a shrunken version of the
new tree

5-Gc) = 5- (x) + > 5- • (x)
✓helps us to not learn too fast (avoid overfitting).

(c) update the residuals

ri = ri - 7 Fb be;) .

③ Output the boosted model

I Got = ÉX 1×1 .
Boosting classification is similar idea

,
but more complex ihdeta.IS.b = I

13

Boosting has three tuning parameters:

1.

2.

3.

B- the # of trees

Unlike bagging and RF
, boosting can comfit w/ large B

.

We can use CV to shut B.

✗ - learning rate (small positive ¥)

this controls fate at which the algorithm learns.

typically choose 7 = 0.01 or 7=0.001

Very small 7 can require large B to achieve good performer .

depends on problem/ data .

d- A- splits in each tree
.

Controls the complexity of the
whole model

Generally d is the interaction depth and controls the interaction order of the boosted model

since d splits ⇒ at most d variables in tetra .

Often D= 1 works well 1 " stumps
")

↳ if this is the case
,
boosted ensemble is additive

.

↳ " Ada boost "

One of the coolest things about boosting is not only does it work well ,

but it fits nicely into a statistical framework called
" Decision theory

"

, meaning

we have some guarantees on its behavior !

