
Chapter 9: Support Vector Machines
The support vector machine is an approach for classi�cation that was developed in the
computer science community in the 1990s and has grown in popularity.

The support vector machine is a generalization of a simple and intuitive classi�er called the
maximal margin classi�er.

Support vector machines are intended for binary classi�cation, but there are extensions for
more than two classes.

Credit: https://dilbert.com/strip/2013-02-02
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1 Maximal Margin Classi�er
In -dimensional space, a hyperplane is a �at af�ne subspace of dimension .

The mathematical de�nition of a hyperplane is quite simple,

This can be easily extended to the -dimensional setting.

We can think of a hyperplane as dividing -dimensional space into two halves.

y
based on a

hyperplane
separator

✗
extension of

euclidean space .

eg .
In 2 dimension

,
a hyperplane is a flat 1 dimensional subspace - a line

.

In 3 dimensions
,
a hyperplane is a flat 2 dimensional subspace - a plane÷:*:*:*. :

In
p > 3 dimensions , harder to conceptualize , but still a flat p - l diner

. Subspace .

parameters

In 2 dimensions
,
a hyperplane is defied by pot f.✗at pax, = 0-

-
-

i. e. any ✗ = [✗ , ,✗ a) for
whih this equation holds lies on the hyperplane .

Nate this is just the equation for alive
.

ftp.X ,
t .

. .

+ ppxp = 0 defines a p
- dim hyperplane.

i.e. any ✗= CX
, , . . ,Xp) to which this equation holds

lies on the hyperplane .

If pot P , X , t . . - + ppxp > 0 then ✗ lies on one side of the hyperplane

pot P , X , t . . . tfpxp
20 then ✗ lies on be other side of te hyperplane .

You can determine which side of the hype plane by just determining the sign of

pot fix , t.it Ppxp
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1.1 Classi�caton Using a Separating Hyperplane

Suppose that we have a  data matrix  that consists of  training observations in -
dimensional space.

and that these observations fall into two classes.

We also have a test observation.

Our Goal:

a--1¥;) . . - a:-(¥:)
i
training observations

Yi ) - n,Yn
C- {-1

,
I }

Here -1 represents one class

P represents the other class
.

p - rector of observed features

✗
*
= (XY

, . .,XpÑ

Develop a classifier based on training data that will correctly classify

the test observation based on feature measurements .

We have already used many approaches :
- trees
- KNN
-

logistic
- boosting , bagging , RF

- LDA , QDA

we will see a new approach using a separatinghyperplme
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Suppose it is possible to construct a hyperplane that separates tthe training observations
perfectly according to their class labels.

Then a separating hyperplane has the property that

If a separating hyperplane exists, we can use it to construct a very natural classi�er:

That is, we classify the test observation  based on the sign of 
.

We can also use the magnitude of .
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pot ppci , t . . . tppxip > 0 if Yi

-

-1 and

Po taxi , t .
. . tppxip so if Yi

= - p

⇐

Yilpotpixiit . . - + ppkip) > 0
It i -

-
1
,
. . >

n

-

atest observation is assigned a class depending on which side of the hyperplane it is located
.

if 5-Go) > 0 assign x* to class 1
.

if f-GEICO assign ✗
* to class -1 .

If f(x*) is far from zero
,
this means x* lies far from the hyperplane

⇒ We can be confident about our class assignment for ✗*

If fGc*) is close to zero , it is located rear te hyperplane

⇒ we are less sure about class assignment .

Note : a classifier band on a separating hyperplane leads to a Inger decision boundary .
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1.2 Maximal Margin Classi�er

If our data cab ve perfectly separated using a hyperplane, then there will exist an in�nite
number of such hyperplanes.

A natural choice for which hyperplane to use is the maximal margin hyperplane (aka the
optimal separating hyperplane), which is the hyperplane that is farthest from the training
observations.

We can then classify a test observation based on which side of the maximal margin hyper-
plane it lies – this is the maximal margin classi�er.

* &

' hyperplane a given separating hyper plane
can usually be shifted a tiny bit ⇒ which one to

"
*.

up or down or rotated without use for our classifier.

coming into contact 4 any observations.

=

• We compute the perpendicular distance from
each observation to a giver separating hyperplane .

- the smallest distance is known as the margins.

The maximal margin hyperplane is the one w/ the largest margin , i.e. furthest from all

training points
.

✗
✗ -1¥

.
← separating

hyperplane M
,
> Mz

+ +
.

⇒ larger margin

⇒ purple is my preferred hyperplane.⇒÷¥:÷:,
- hopefully a large margin on the training data will lead to a large margin on test data

⇒ classify test data correctly .

- When p
is large, overfitting does occur.

supporting because treythese two points
are equidistant from

these
are known as

the maximal margin hyperplane .

ye p
- dim vectors that

"

support
"

the hyperplane .

i. e. if these 2 points more
, the maximal margin hyperplane

would more as well
.

µ a
small # of points

Note : the maximal margin hyperplane only depends on terms !

The rest of the points con more and it doesn't matter.
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We now need to consider the task of constructing the maximal margin hyperplane based
on a set of  training observations and associated class labels.

The maximal margin hyperplane is the solution to the optimization problem

This problem can be solved ef�ciently, but the details are outside the scope of this course.

What happens when no separating hyperplane exists?

X
, , -

-pen C- Ñ y , , - -iyn C- { -1
,
I }

.

① Maximize µ
← margin

Bos - -
- spp , M

subject to Épi =p②
j = ,

③
y :( pot Pixi , + .

. . + ppxip) ? M ti --1, . ., n

③ means each observation will be on the correct side of hyperplane ( Mzo) w/ some

cushion ( if M> o ) .

② ensures Yi ( pot Aki , t . . . tppxip) is perp .

distance b- hyperplane and ③

means the point Xi is at least M distance away .

⇒ M is the margin .

① chooses Po , - . , pp ,
M to maximize the margin .

⇒ maximal margin hyperplane !

↳ we'll talk a little bit more later.

-a

✗ +
+

⇒ no maximal margin hyperplane !
+

•

+

'

÷We can develop a hyperplane that almost

separates the classes - a
" soft margin

"

We can't draw a hyperplane to separate these

perfectly !
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2 Support Vector Classi�ers
It’s not always possible to separate training observations by a hyperplane. In fact, even if
we can use a hyperplane to perfectly separate our training observations, it may not be
desirable.

We might be willing to consider a classi�er based on a hyperplane that does not perfectly
separate the two classes in the interest of

The support vector classi�er does this by �nding the largest possible margin between
classes, but allowing some points to be on the “wrong” side of the margin, or even on the
“wrong” side of the hyperplane.

A classifier based on a perfectly separating hyperplane + +
-1

,

,

/
'

"

will necessarily perfectly classify all training obs .
+
+

This can lead to oversensitivity to individual

,

'É
?

observations
,

a single data point can have a

large effect on the hyperplane
(w/ smaller margin !)

-

greater
robustness to individual observations

proper classification of most of tie training observations.

i. e. it might be worthvile to miss classify a few observations in training data b-
do a better job classifying the test data .

→ sometimes
called

" soft margin classifier
"

Écatirg '

hyperplane this is inevitable .

r

wrong side of margin
or hyperplane . That's okay

!
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The support vector classi�er xlassi�es a test observation depending on which side of the
hyperplane it lies. The hyperplane is chosen to correctly separate most of the training
observations.

Once we have solved this optimization problem, we classify  as before by determining
which side of the hyperplane it lies.

&

Solution to the following optimization problem :

maximize M←
margin

Pipp -1 Bp , 4 , . -, En , M

subject to
p

Epi = I

j =\

y :( pot -pint . .
.
+ Ppxip) 7M ( l - E;)

E; ZO ) É? " ±

nonnegative tuning Pomme
"i

" slack variables
"

( budget for how wrong we are willing to be on training data) .

allow observations to be

on the wrong side of the margin (or hyperplane) .

Classify ✗* based on sign of f(⇒ = pot f. ✗Ft . . . + AXE

- tells us where the observation lies relative to hyperplane and margin .

If Ei=O⇒ obs
.

on correct side of the margin .

Ei > 0 ⇒ obs
.

on wrong side of margin Cviolated margin )

Ei > I =) obs
. on wrong

side of hyperplane .

- tuning parameter , bonds the sum of Ei 's ⇒ determines # and severity of violations
we will allow .

think of C as a budget for amount of violations
.

if c-- o ⇒ no budget for violations⇒ E
,
= . .

-

= En-- o ⇒ sv classifier = maximal margin classifier.

If c > 0 ⇒ no more than C obs. can be on the wrong
side of te hyperplane .

because E;
> 1 and ÉEI ± c controls

in

small C ⇒ narrow margins , large C → wide margins , allow for more violations bias-

Variancetradeoff
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The optimization problem has a very interesting property.

Observations that lie directly on the margin or on the wrong side of the margin are called
support vectors.

The fact that only support vectors affect the classi�er is in line with our assertion that 
controls the bias-variance tradeoff.

Because the support vector classi�er’s decision rule is based only on a potentially small
subset of the training observations means that it is robust to the behavior of observations
far away from the hyperplane.

⇒ choose C by CV .

Only observations on the margin or violate the margin or hyperplane a Act the hyperplane !

⇒ the classifier .

i.e. observations that lie on the correct side of the margin do not a Hat the

support vector classifier
!

g-
hyperplane

-

These observations do affect the classifier .

When L large ⇒ margin is wide
, many observations violating margin

or hyperplane.

⇒ many support vectors

⇒ many observations used
to determine the hyperplane .

⇒ low variance but potentially high bias .

When c small ⇒ fewer support vectors

⇒ low bias but high variance .

-

distinct from behavior of other classifier methods

e.of . LDA depends on mean of a observations within each class t within class

↳variance matrix .



10

3 Support Vector Machines
The support vector classi�er is a natural approach for classi�cation in the two-class
setting…

We’ve seen ways to handle non-linear classi�cation boundaries before.

In the case of the support vector classi�er, we could address the problem of possible non-
linear boundaries between classes by enlarging the feature space.

Then our optimization problem would become

if the decision boundary is linear !

f
how to draw a

line

separating ?

won't work well ."""" "

""""""⇐#
bagging , RF, boosting

nonlinear basis function 1- login regression ,
KNN

,
QDA

e.g. adding qvadritic or cubic terms

instead of filthy Sr classifier w/ Xi , . -, Xp

could hit X, , . - ,Xp , Xi, - - , Xi etc
.

Maximize M

poi Pimpin- -, Pip , fan . - . , P2p , Eh - -, En /M

subject to

y
quadratic

polynomial
leads to

nonlinear
boundary

{ I
i= ,

k= ,
Pkj =/

p P

yi ( pot Epi;xijt EfiXii )
? Mfl - Ei )

j -- l I =,

ÉEIEC
it

could consider higher order polynomials or other functions
.
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The support vector machine allows us to enlarge the feature space used by the support
classi�er in a way that leads to ef�cient computation.

It turns out that the solution to the support vector classi�cation optimization problem in-
volves only inner products of the observations (instead of the observations themselves).

It can be shown that

Now suppose every time the inner product shows up in the SVM representation above, we
replaced it with a generalization.

→
using

"kernel 's

-

Want to enlarge feature space to
have non-linear boundary .

computation
of

a.
+
classifier

.
-

-

supp idea innerpnductla.b7-Eaib.in
p

inner product of two obs : {Xi , Xi. > = ⇐xijscinj

The ( liner) support vector
classifier can be written as

the)= pot Éditx , Xi> hi , i =\, . . , n
additional parameters .

i -- I

=nln
To estimate din .,2n and Po need (2) inner products between all pairs of training observations.

di nonzero only for support vectors in the solution !

we only need
inner products,

↳ typically less than n
not observations themselves

.

+
⇒ rewrite fan = pot Etitx, Xi> , S -

-
indices of support vectors .

its

<x,xi7

Kernel : k(xip.ci.) .

I some function) .
-

↳ a function that qualifies similarity of two
observations.

• it Kfxi , Xie) = ⇐Xi; Kir; results in support vector classifier
" linear kernel

"
be liner

boundary .

p
" support

{ Kfxisxir)
= ( I + ⇐xijxi;)d

← ""
"""

"

polynomial kernel
"

vector
machine

"

K(Xi ,Xi .) = exp C- 8 É(xij-xi.jp) "

radial kernel
"

5- I

Tpos . constant
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flx) = pot Etiklxixi)its

when d-- l in polynomial SVM , D= 4 8=2

same as
linear SVM . Ktxipci.) = exec-8¥,

Cxij - Xi'Ñ)
= fitting a support
tutor classifier

If a test observation
✗
* that is for

in a higher dimensional
from a training observation , then

feature space w/ p

polynomials of degree
d-

¥44. - xijjh will
be large
⇒

k(x*, x;) will be very
small

⇒ will play no/ small role in determining

f(x*).

⇒ training observations far from ✗
*

will play little to no role in

prediction of class of x?

Why use a kernel instead of enlarging feature space using functions of features ?

• computational
- only need to compute Ktxi, Xi.) t (1) distinct pairs i. i

'

- don't have to explicitly work in an enlarged space
(may be too large to compute hyperplane )

- radial kernel - enlarged feature space is infinite dimensional !
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4 SVMs with More than Two Classes
So far we have been limited to the case of binary classi�cation. How can we exted SVMs
to the more general case with some arbitrary number of classes?

Suppose we would like to perform classi�cation using SVMs and there are  classes.

One-Versus-One

One-Versus-All

This is actually not that deer
.
There is no ones obvious way to do this

.

Two popular options :

① Construct (E) sums each comparing a pair of classes
.

② Classify a test observation using each of me (E) sums

③ Assign test aberration to class it was most frequently assigned to.

let ✗
* be a test observation .

① Fit K sums comparing each class to remaining K - l classes .

② assign X" to be class for chieh Pok + fix-1 + . . . + ppkxtp is largest.

( results in high level of confidence test observation belongs to Ktn class over
any

other)
.


