
Lab 7: Tree-based ModelsLab 7: Tree-based Models
We will use the Carseats data set in the ISLR package to predict high_sales for
carseats at 400 different stores.

## 'data.frame':    400 obs. of  11 variables:
##  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
##  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
##  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
##  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
##  $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
##  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
##  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 
1 3 2 3 3 ...
##  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
##  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
##  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 
...
##  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 
...

library(ISLR) ## data package
library(tidyverse) ## data manipulation
library(tidymodels) ## tidy modeling
library(knitr) ## tables

## reproducible
set.seed(445)

## data
str(Carseats)



0.0.11 Data Preparation Data Preparation

1. Make a copy of the Carseats data frame called df.
2. Create a variable called high_sales in df that takes the value “high” if Sales > 8

and “low” otherwise.
3. Convert your high_sales column to be a factor.
4. Remove the Sales column from df.

0.0.22 Decision Trees Decision Trees

The rpart.plot package can be useful for creating tree diagrams.

1. Using the decision_tree() function with the "rpart" engine in tidymodels, fit
a large classification tree to predict high_sales using every variable in df. [Hint:Hint:
The syntax is very similar fitting a linear_reg]

2. Inspect your tree. How many terminal nodes do you have? What is the training error
rate?

3. Use the rpart.plot function to visualize your tree. What is the most important
indicator of high sales?

[Hint:Hint: You need to extract the fit from your fitted tree using
extract_fit_engine() before plotting.]

4. Split your observations into a training and a test set with  records each. Estimate
the test error rate of your tree.

5. Produce a confusion matrix for your test set.

6. Perform cross-validation to determine the optimal level of tree complexity on your
training data set. Which  (corresponds to k in the output) should we choose?

7. Use the functions finalize_workflow and select_best() to prune your tree to
the chosen complexity. Plot your final tree.

8. Repeat 4-5 using your pruned tree. Which performs better?

library(rpart.plot) ## plotting trees
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0.0.33 Bagging & Random Forests Bagging & Random Forests

We will use the rand_forest function to perform bagging and random forests. Recall
that bagging is simply a special case of random forests with . Here is an example of
a bagging specification for classification:

The vip package can be used to easily plot variable importance.

## 
## Attaching package: 'vip'

## The following object is masked from 'package:utils':
## 
##     vi

1. Perform bagging on your training df to predict high_sales. Specify importance
= TRUE to also obtain information on the importance of each predictor.

2. Make a plot of the importance values for each predictor using the vip function.
What is the predictor with the highest importance?

3. Estimate the test error rate using your bagged tree model.

4. Repeat 1-3 using a random forest with  via mtry = sqrt(.cols()).

5. Compare the OOB confusion matrix to your test confusion matrix. [Hint:Hint: The
confusion element of the model output fit is OOB.]

0.0.44 Boosting Boosting

To perform boosting we will use the boost_tree() function with the "xgboost" engine.

m = p

bagging_spec <- rand_forest(mtry = .cols()) |> ## automatically grabs 
the number of columns

  set_engine("randomForest", importance = TRUE) |> ## save information 
to plot importance

  set_mode("regression")

library(vip)

m = √p



Here is an example specification:

1. Fit a boosted tree ensemble to your training df predicting high_sales with 
 trees, learning rate of , and an interaction depth of .

2. Estimate the test error rate using your boosted tree model and compare to all
previously fit models.

boost_spec <- boost_tree(trees = 5000, tree_depth = 4) %>%
  set_engine("xgboost") %>%
  set_mode("classification")

B = 5, 000 λ = 0.01 d = 2


