Chapter 5: Assessing Model Accuracy

One of the key aims of this course is to introduce you to a wide range of statistical
learning techniques. Why so many? Why not just the “best one”?

Hence, it’s important to decide for any given set of data which method produces the best
results.

THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE LJRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

https://xked.com/1838/

https://xkcd.com/1838/

1 Measuring Quality of Fit

With linear regression we talked about some ways to measure fit of the model

In general, we need a way to measure fit and compare across models.

One way could be to measure how well its predictions match the observed data. In a
regression session, the most commonly used measure is the mean-squared error (MSE)

We don’t really care how well our methods work on the training data.

Instead, we are interested in the accuracy of the predictions that we obtain when we apply
our method to previously unseen data. Why?

So how do we select a method that minimizes the test MSE?

But what if we don’t have a test set available?

301

254

20

154

104

model df Test MSE Train MSE

Linear Regression 2
Smoothing Spline 6
Smoothing Spline 25

100

4 1 Measuring Quality of Fit

1.1 Classification Setting

So far, we have talked about assessing model accuracy in the regression setting, but we
also need a way to assess the accuracy of classification models.

Suppose we see to estimate f on the basis of training observations where now the
response is categorical. The most common approach for quantifying the accuracy is the
training error rate.

This is called the training error rate because it is based on the data that was used to train
the classifier.

As with the regression setting, we are mode interested in error rates for data not in our
training data.

1.2 Bias-Variance Trade-off

1.2 Bias-Variance Trade-off

The U-shape in the test MSE curve compared with flexibility is the result of two
competing properties of statistical learning methods. It is possible to show that the
expected test MSE, for a given test value xg, can be decomposed

This tells us in order to minimize the expected test error, we need to select a statistical
learning method that siulatenously achieves low variance and low bias.

Variance —

Bias —

2 Cross-Validation

As we have seen, the test error can be easily calculated when there is a test data set
available.

In contrast, the training error can be easily calculated.

In the absense of a very large designated test set that can be used to estimate the test
error rate, what to do?

For now we will assume we are in the regression setting (quantitative response), but
concepts are the same for classification.

2.1 Validation Set

2.1 Validation Set

Suppose we would like to estimate the test error rate for a particular statistical learning
method on a set of observations. What is the easiest thing we can think to do?

Let’s do this using the mpg data set. Recall we found a non-linear relationship between
displ and hwy mpg.

40 -
°
°
°
°
.
304 :
>
2
= °
.
°
:
201 °
$ T .
° @
o0 o o
° oo oo e o
° .
°
2 3 4 5 6 7

displ

We fit the model with a squared term disp1?, but we might be wondering if we can get
better predictive performance by including higher power terms!

2 Cross-Validation

get index of training observations
mpg val <- validation_split(mpg,)

models
Im spec <- linear reg()

linear recipe <- recipe(hwy ~ displ, mpg)

quad_recipe <- linear recipe |> step mutate(displ”?)

cubic_recipe <- quad_recipe |> step mutate(displ”?)

quart_recipe <- cubic_recipe |> step mutate(displ”™’)

m0 <- workflow() |> add model(lm spec) |> add recipe(linear recipe) |>
fit resamples(mpg_val)

ml <- workflow() |> add model(lm spec) |> add recipe(quad_recipe) |>
fit resamples(mpg_val)

m2 <- workflow() |> add model(lm spec) |> add recipe(cubic recipe) [>
fit resamples(mpg_val)

m3 <- workflow() |> add model(lm spec) |> add recipe(quart recipe) |>
fit resamples(mpg_val)

estimate test MSE

collect metrics(m0) |> mutate("linear") |>
bind rows(collect metrics(ml) |> mutate("quadratic")) |>
bind rows(collect metrics(m2) |> mutate("cubic")) |>
bind rows(collect metrics(m3) |> mutate("quartic")) |>
select(model, .metric, mean) |>
pivot wider/(.metric, mean) |>
select(-rsq) |>
kable()

model rmse

linear 4.318968
quadratic 3.882112
cubic 3.866194
quartic 3.860612

2.1 Validation Set

4.5

4.0+

rmse

3.5+

3.0

terms

10 2 Cross-Validation

2.2 Leave-One-Out Cross Validation

Leave-one-out cross-validation (LOOCYV) is closely related to the validation set approach,
but it attempts to address the method’s drawbacks.

The LOOCYV estimate for the test MSE is

LOOCYV has a couple major advantages and a few disadvantages.

2.3 k-Fold Cross Validation

perform LOOCV on the mpg dataset

mpg_loocv <- vfold cv(mpg, nrow(mpg))

models

m0 <- workflow() |> add model(lm spec) |> add recipe(linear_ recipe)
fit resamples(mpg_loocv)

ml <- workflow() |> add model(lm spec) |> add recipe(quad_recipe)
fit resamples(mpg_loocv)

m2 <- workflow() |> add model(lm spec) |> add recipe(cubic_recipe)
fit resamples(mpg_loocv)

m3 <- workflow() |> add model(lm spec) |> add recipe(quart recipe)
fit resamples(mpg_loocv)

estimate test MSE

collect metrics(m0) |> mutate("linear") |>
bind rows(collect metrics(ml) |> mutate("quadratic")) |>
bind rows(collect metrics(m2) |> mutate("cubic")) |>
bind rows(collect metrics(m3) |> mutate("quartic")) |>
select(model, .metric, mean) |>
pivot wider .metric, mean) |>
select(-rsq) |>
kable()

model rmse

linear 2.808356
quadratic 2.675896
cubic 2.615363
quartic 2.643536

2.3 k-Fold Cross Validation

An alternative to LOOCYV is k-fold CV.

11

12 2 Cross-Validation

The k-fold CV estimate is computed by averaging

Why k-fold over LOOCV?

2.3 k-Fold Cross Validation

13

perform k-fold on the mpg dataset
mpg 10foldcv <- vfold cv(mpg,)

models

m0 <- workflow() |> add model(lm spec) |> add recipe(linear_ recipe) |>

fit resamples(

mpg 10foldcv)

ml <- workflow() |> add model(lm spec) |> add recipe(quad recipe) |>

fit resamples(

mpg 10foldcv)

m2 <- workflow() |> add model(lm spec) |> add recipe(cubic recipe) |>

fit resamples(

mpg 10foldcv)

m3 <- workflow() |> add model(lm spec) |> add recipe(quart recipe) |>

fit resamples(

estimate test MSE

mpg 10foldcv)

collect metrics(m0) |> mutate("linear") |>
bind rows(collect metrics(ml) |> mutate("quadratic")) |>
bind rows(collect metrics(m2) |> mutate("cubic")) |>
bind rows(collect metrics(m3) |> mutate("quartic")) |>
select(model, .metric, mean) |>
pivot wider .metric, mean) |>
select(-rsq) |>
kable()

model rmse

linear 3.805566
quadratic 3.432052
cubic 3.409391
quartic 3.408420

14 2 Cross-Validation

3.8+
3.7 1
Q
9 3.6
3.5

3.4 1 == e

terms

2.4 Bias-Variance Trade-off for ... 15

2.4 Bias-Variance Trade-off for k-Fold Cross
Validation

k-Fold CV with k < n has a computational advantace to LOOCV.

We know the validation approach can overestimate the test error because we use only half
of the data to fit the statistical learning method.

But we know that bias is only half the story! We also need to consider the procedure’s
variance.

To summarise, there is a bias-variance trade-off associated with the choice of k in k-fold
CV. Typically we use k = 5 or k = 10 because these have been shown empirically to yield
test error rates closest to the truth.

16

2 Cross-Validation

2.5 Cross-Validation for Classification Problems

So far we have talked only about CV for regression problems.

But CV can also be very useful for classification problems! For example, the LOOCV error
rate for classification problems takes the form

X2

Bayes Classifier KNN, K =1
’...ig.a'.. ..%... '..‘ig.ao.. ..\...
% | °‘3§-%. % ° "2;-%.
KNN, K=10 KNN, K=100
'..‘ig.ﬁt.. '.\ ... ';.‘jg.af. ..s O..
% ° °‘2§-%. % ° “2{-%.
6 3 0 3 66 -3 0 3

class
o 1
o 2
.pred_class
1
2

2.5 Cross-Validation for Classifi... 17

k fold <-

train cv <- vfold cv(train, k_fold)

grid large <- tibble(seq(!, '))
knn_spec <- nearest neighbor("classification",

tune("neighbors"))
knn_spec |>

tune grid(class ~ x1 + x2, train cv, grid large)
| >
collect metrics() |[>
filter(.metric == "accuracy") |>
mutate(- mean) -> knn_err
0.27
2 0.26
(T
>
O
5 0.25-
o}
L
X
0.24 4
0.23
0 25 50 75 100
KNN K

Minimum CV error of 0.23 found at K = 7.

