
Chapter 6: Linear Model Selection &Chapter 6: Linear Model Selection &
RegularizationRegularization
In the regression setting, the standard linear model is commonly used to describe the
relationship between a response  and a set of variables .

The linear model has distinct advantages in terms of inference and is often surprisingly
competitive for prediction. How can it be improved?

We can yield both better prediction accuracy and model interpretability:

Y X1, … , Xp

-
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typically fit / least square.

Upcoming :

more general models (non-linear)

-

e

replace least squares of alternative fity procedures,

- -

Fionaccuracy : If true relationship is liner=] least squares will have low bins
.

If
n <> p => also have low variance -t perform well on test data !

If a not much larger then p> high variability -> poor performance .

If p>n => no longer have a unique solution -> Variance =

& => cannot be used at all !

God : reduce variance without adding too much bins .

model interpretability : often many variables used in a regression are not associated o/ response.

-

By removing (Sethly B =
= 0)

,
we can obtain a more easily interpretable mocl .

Note: least sques will hardly ever result in i
=

0 .

> need variable selection .

same ideas apply to logistic regression .
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11 Subset Selection Subset Selection
We consider methods for selecting subsets of predictors.

1.11.1 Best Subset Best Subset

To perform best subset selection, we fit a separate least squares regression for each
possible combination of the  predictors.

Algorithm:

We can perform something similar with logistic regression.

1.21.2 Stepwise Selection Stepwise Selection

For computational reasons, best subset selection cannot be performed for very large .

Stepwise selection is a computationally efficient procedure that considers a much smaller
subset of models.

Forward Stepwise Selection:

p

p

-

Selection
.

⑰models with exactly 2 predictors,
etc

.

1 . Let
o

denote the model with no predictors.

2
.

For K =1
,.., p

(a) Fit all (i) models that contain predictors .

(b) Pick the best of those (call it MI) .

"Best" is defiled by GRSS (*R2)
·

3
.

Select a single best model from Mos ...,Mp using (verror
, ,

or adjusted R2
traditional metrics

,
more later.

Why can't he use R2 for Step 3? as po ,
&24 aways . Why might renot want to do this at all ?

computation
Fitting 2P models ! p

= 10 =7 1000 mells .

->"impossible"
-

with =40.

Belt subset may also subset when plage because / a large search space can find good models

in training that perform poorly mutest data

-> high variabilitys over filty can occur
.

-

start with no predictors and add one predictor at a time until all predictors-
are in the model

,
Choose the "best" from trese.

1 . Let Mo demote the null model - no predictors

2 . For k= 0
... -1

(a) Consider p-k models that augment the predictors in Mp /I additional pedictor.

(b) Choose the best among best p-k and call it M
,H

& &RY
.

3. Select a single best model from Mo .
--

/ Mp using V error
, Cp ,

AlCBIC
,

or adjusted R?

Now nefit It [E(p-K) = It
"

models !
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Backward Stepwise Selection:

Neither forward nor backwards stepwise selection are guaranteed to find the best model
containing a subset of the  predictors.

1.1.33 Choosing the Optimal Model Choosing the Optimal Model

 

AIC & BIC 

Adjusted  

Validation and Cross-Validation

p

Cp

R2

Begin my full model and take predictors away me at a fire until
you gutto

the null model .

1 . Let Mp demote the full model
, contains all predictors .

2. For K =

p , p-1, ..,
1 :

(a) Consider all models (k) trat contain all but ore of the predictors in Mpc (K-1 predictors)·

(b) Choose the best among frem
,

call it M1-1 (AR2)
.

3
.

Select the single best model from Mo
...,Mp Using CV

, Cp , AIC/312
,

or adjusted R2
.

#
-

forward Selection cam be used when PIn (but only up to not pedictors (not up to pl
.

Best subset, forward selection , backward selection all need a way to pick the "best" model- according to test error.

·RSS +RE are proxy for training error => not estimates of error

z
estimate of varioner 28 estimate this directly (CV) or

& = i (RSS + 2 d-
of E (full model) . ② adjust training errors for model size

int # predictors
model .

in subst model

adds a penalty to training error (RSS) to adjust for underestination of test error.

(choose model u lowest valre) ·

*②& cam get for models fit /MLE

AIC = (RSS + 2 d 84
.

BIC = niz (RSS + log(n) d 82)
.

choose model / lowest Alcoplog(n) >2 for n<7 => heaver penalty on models of many variables

IC.

-> results in smaller modes .

② Conly for least squares) -

R3SR2= 1- Ess Always & as d4

AdjR= I - -x(n-d- 1)

⑪ *

Directly
estiniarese mode histant the lowest sided even

Very general (can be used for any model) even whenit's not char how way "predictors" we have
.

Now have fast computers -> Prese are prefered .
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22 Shrinkage Methods Shrinkage Methods
The subset selection methods involve using least squares to fit a linear model that contains
a subset of the predictors. As an alternative, we can fit a model with all  predictors using
a technique that constrains (regularizes) the estimates.

Shrinking the coefficient estimates can significantly reduce their variance!

2.12.1 Ridge Regression Ridge Regression

Recall that the least squares fitting procedure estimates  using values that
minimize

Ridge Regression is similar to least squares, except that the coefficients are estimated by
minimizing

The tuning parameter  serves to control the impact on the regression parameters.

p

β1, … , βp

λ

-

-

& shrinks estimates towards zero
·

-to avoid overfilly!

RSS = Elwi-Bo-Xij)
residual sum of squares .

B

note we are not penalizing Bo
~

we want to penalize the relationships, not tre intercept
L

P

Eli-po-,xi) + x, = RSS + I
(mean value of response when xi = ... =24p

=0
.

O B
j=

1turing
parameter /determine separately from filiy) .

trades off 2 criteria : minimize RSS to fot data well

minimize Des "Shrinkage penalty" will be small when
; close to zeo = strink

estimates
towards zero.

When x = 0
,
penalthas no elect -> ridge regression

: least squares.

As x +
b , impact of penalty grows -> BR-30 .

midge regression will produce a difet set of sefficients for each penalty (Bi).

Selecting a good X is critical ! How to choose? Cress Validation'
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The standard least squares coefficient estimates are scale invariant.

In contrast, the ridge regression coefficients  can change substantially when
multiplying a given predictor by a constant.

Therefore, it is best to apply ridge regression after standardizing the predictors so that
they are on the same scale:

β̂
R

λ

Multiply X; by a constant a leads to a scaling of OLS Get estimate by a factor of I .

=> regardless of how the ith predictor is scaled X;; will remain
the same

.

-

e. g . say we have an income variable in & dollars vs
. & thousands of dollers

due to the sun of squared coef- term
, this change ot simply cause th refficient to

charge by a factor of 1000.

-> XB depends not only on X
,

but also on the scaling of X;

(may even depend on scaling of other predictors)
-

have standard deviation of one
.

Xij=
Cij

-- I -

I
ni=

(xij -x;
ne

st . der, of ith predictor.

① standardize data

thre model to choose x (via cross validation)
.

③ fit ridge regression on standardized data / chosen X
.
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Why does ridge regression work?

Because of the bias-variance trade-off !

As IN
,

the flexibility of the ridge regression fot ↓

-> variance ↓ and biast

-
MSt : varimer

bins"

d nex
-

ini

&
raina
↳

X

in situations where relationship between response a predictors is linear

OLS will have low bins .

-

when p
almost as large as n => OLS will have niability !

I
< if pin least squares

doesn't even have a unique solution
.

ridge regression can still perform well in prese scenarios by trading off a small amountof bins

for a decrease in variance .

↳ Ridge regression works best in high variance scenarios
.

10:

cost advantage over subset selection

because for fixed D
, only fitting one model ! (very fast model to fit) .

Ridge regression improves predictive performance .

Does it also help us with interpretation ?
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2.2.22 The Lasso The Lasso

Ridge regression does have one obvious disadvantage.

This may not be a problem for prediction accuracy, but it could be a challenge for model
interpretation when  is very large.

The lasso is an alternative that overcomes this disadvantage. The lasso coefficients 
minimize

As with ridge regression, the lasso shrinks the coefficient estimates towards zero.

As a result, lasso models are generally easier to interpret.

p

β̂
L

λ

Unlike best subset
,

forward or backward selection
, ridge regression will include a variables in trefinal

model
.

penalty &E, Will shrink all -30 but to (unless + = b) !

-

-

We will always have all variables in the model
,

whether there is a relationship /y or not.

bsolute
I A I

d Leas and

Shrinkage operator
-

selection

E
,

(vi - - (i) + x, ) = RSS +eE
e

e, penalty
(SBI = "I2 penalty") .

-

I, penalty also has the effect of forcing some deficients to be exactly zo when I is sufficiently lage .

-> much like our selection methods
,

lasso performs variable selection !

-

the lass yields models - models / only a subset of the variables .

Again selecting a good X is critical
.

Use cross validation !
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Why does the lasso result in estimates that are exactly equal to zero but ridge regression
does not? One can show that the lasso and ridge regression coefficient estimates solve the
following problems

In other words, when we perform the lasso we are trying to find the set of coefficient
estimates that lead to the smalled RSS, subject to the contraint that there is a budget  for
how large  can be.

s

∑p

j=1 |βj|

constrained
->

lasso : minimize EE li-Po-icij) 3 subject toE ils 3 optimization

equivalent
to

ridge : minimize E
.
E

,

lzi-po- -15 sunset s posses.
other formulation

/x
constraints

st
-

When s is very large,
this is not much of a constraint => Off estimates cambe large (same for ridge) .

But why does the lasso result in coeficient estimates exactly equal to 0?

let p
= 2 :

I

contours of

RSS
cregions

of

constant
RCS)

P2 a
Pa a

⑪⑩Ques increases
.

· intersection
will be B

& intersection he- -
2#& ESBp 9 ,

1 + 12) = S

solution to lasso or ridge is the first point in the ellispes (RSS) contact the constraint regiber .

Ridge has a circular region > No sharp points ,
instersection won't generally occur on treaxis .

Lasso corners on each axis => ellipse often intersects at theaxis=> one of treefiants to equal zero·

-

If we believe the are predictors that dis not have a relationship /Y (we just don't know which oves)

lasso will perform better .

If not everything is important) , ridge will perform better
.

Use CV to pide!
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2.2.33 Tuning Tuning

We still need a mechanism by which we can determine which of the models under
consideration is “best”.

For both the lasso and ridge regression, we need to select  (or the budget ).

How?

λ s

For subset me have CP , AIL/BIC, adjusted R,
CV error

. ~equivalent
L

- -

peralization
parameter

⑧ scale data
.

① choose a grid of x values

② Compute CV error (K-fold) for each 4
.

③ Select i for which CV error is smallest

④ refit chosen model using all available obserations and selected y
.

NoteA still important to scale variables < ..,<p for lasso to have studen
.

=1
.
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33 Dimension Reduction Methods Dimension Reduction Methods
So far we have controlled variance in two ways:

We now explore a class of approaches that

We refer to these techniques as dimension reduction methods.

⑧ Using a subset of original variables
- best subset, forward/backward selection ,

lasso.

② shrinking reficients towards zeo
.

-> ridge regression ,
lasso

.

These methods all defined using original predictor variables Xi -->Xy

① transform tro predictors

② fit least squares using the transformed variables.

-

① Let Ep .., represent Map linear combinations of our original predictors.

Em
= E

,

PimXs

for Constants Ams .., Ppm m = 1
, .., M

.

② fit the linear regression model using least squares

Yi
= Got Omzin+9

;
i=--, n

r

↳I
regression coefficients

If choose Dim Well
,

this can outperform least squares (v) original data).
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44 Considerations in High Dimensions Considerations in High Dimensions
Most traditional statistical techniques for regression and classification are intendend for
the low-dimensional setting.

In the past 25 years, new technologies have changed the way that data are collected in
many fields. It is not commonplace to collect an almost unlimited number of feature
measurements.

Data sets containing more features than observations are often referred to as high-
dimensional.
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What can go wrong in high dimensions?
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Many of the methods that we’ve seen for fitting less flexible models work well in the high-
dimension setting.

1. 

2. 

3. 

When we perform the lasso, ridge regression, or other regression procedures in the high-
dimensional setting, we must be careful how we report our results.


