
Chapter 7: Moving Beyond LinarityChapter 7: Moving Beyond Linarity
So far we have mainly focused on linear models.

Previously, we have seen we can improve upon least squares using ridge regression, the
lasso, principal components regression, and more.

Through simple and more sophisticated extensions of the linear model, we can relax the
linearity assumption while still maintiaining as much interpretability as possible.

Lines models are relatively simple to describe and implement.

Advantages : interpretationa infrence .

Disadvantages:
can have limited predictive performance because lierity is always an approximation :

-

-

improvement obtained by reducin complexity of liner model-> lowering the variance of estimates

still a linew model ! In only improve so much.

-

-> extensions to
-

liner model
.

we've sen ① Polynomial regression : adding extra predictors that are original variables raised to a power
-

this
already . e .g .

cubic regression X
, x,
x3 as predictors , y

= Po +
,
x + Pax + Box+ E

+ Non-linear fit

-> with large powers polynomial can take very strange shapes respecially new the boundry).
&Aspfunctions : cut the range of a variable into K distinct regions to produce a

categorical variable . Fit a piecewise constant function to X
.

③ Resplies : more flexible tran polynomials t step functions (extends both
idea ! cut range of X into K distinct regions & polynomial is fit within each region

Polynomials are constrained so that they are smoothly joined .

④Geadditive models extends above to deal m multipl predictors.

We will stat / predicting Youx love predictor) and exterd to multiple .

Note : Le can talk about regression or classification / above
,

e
. g . logistic regression

P(Y= /(x) =

exp(Bo+ ,
X + 2x+

... + d x4)
e

1 + exp(o+ Bix+ 2x +-.-

+ Baxt)
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11 Step Functions Step Functions
Using polynomial functions of the features as predictors imposes a global structure on the
non-linear function of .

We can instead use step-functions to avoid imposing a global structure.

For a given value of , at most one of  can be non-zero.

X

X C1, … , CK

-

e

idea : Break range of X into bins and fit a difeet constant in each bin
.

details : o create cut points CcC2. .... in tre range of X .

& Construct KH1 new variables

Co(X) = I(X <c
, )

Note :
for any

X
,

c
, (x)

=

I(c
, = x < (2) 3 indicator farctions

11
((x) + 2

, (x) +- -
+ ((X) = D

i
"dummy variables

since X must be in exactly I introl
.

(
, (x)

= I(c = x)

③ Use last squres to fit a liner mocl using C
, (X)

,
(2(x)

, . . ., [x(x)
↑

note: leave out Co(X) because
Y = 30

+

P,, (x) +

... + x((X) + E it is equivalet to including
an intercept.

When x< , all predictors C
,,., < = 0

.

-

Bo interpreted as mean value for Y when X <c .

B; represents the average increase in the response for Xe[Cj
, (5+) relative to x < <

,

We can also fit the logistic regression model for classification :

P(=11x) = enter i!
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Example: Wage data.

yearyear ageage maritlmaritl racerace educationeducation regionregion jobclassjobclass healthhealth health_inshealth_ins logwagelogwage wagewage

2006 18
1.
Never
Married

1.
White

1. < HS
Grad

2.
Middle
Atlantic

1.
Industrial

1.
<=Good 2. No 4.318063 75.04315

2004 24
1.
Never
Married

1.
White

4. College
Grad

2.
Middle
Atlantic

2.
Information

2.
>=Very
Good

2. No 4.255273 70.47602

2003 45 2.
Married

1.
White

3. Some
College

2.
Middle
Atlantic

1.
Industrial

1.
<=Good 1. Yes 4.875061 130.98218

2003 43 2.
Married

3.
Asian

4. College
Grad

2.
Middle
Atlantic

2.
Information

2.
>=Very
Good

1. Yes 5.041393 154.68529

x

for a group of 3000 male workers in Mid-atlantic region.

y
=

wage

O E

-

fitted value of

wage using step

functions
of age,

↑I
missing

ineusig c
,

= 30 ↑

trend vare, c
= 68

logistic regression modeling prob . of being a high earner"
gienage

Unless there are natural beak points in the predictor, (wage >250k)

piecewise constants can miss trends
. using step function wI knots at x= 30

,
60 ·
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22 Basis Functions Basis Functions
Polynomial and piecewise-constant regression models are in fact special cases of a basis
function approach.

Idea:Idea: 

Instead of fitting the linear model in , we fit the model

Note that the basis functions are fixed and known.

We can think of this model as a standard linear model with predictors defined by the basis
functions and use least squares to estimate the unknown regression coefficients.

X

have a family of functions or transformations that can be applied to avaiable X

b
,
(x)

, b2(x)
, .

. .

, by(X).

yi
=

Bot ,
b

, (x) + B2bz(xi) + ... + xbx(i) + Ei

(we choose them ahead oftime).

-

e
.g . polynomial regression : bj(i) = x, i = 1

,...,
d.

e . g . Step function : bj(xi) = I(c = x: (j+ 1) .

-

-

-> can use all our infree tools for liner model : e .g. se(Bi) and F-statistics

for model significance.

many choices exist for basis functions :

e.g . Wardets
,

fourier series
,e splices
-
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33 Regression Splines Regression Splines
Regression splines are a very common choice for basis function because they are quite
flexible, but still interpretable. Regression splines extend upon polynomial regression and
piecewise constant approaches seen previously.

3.13.1 Piecewise Polynomials Piecewise Polynomials

Instead of fitting a high degree polynomial over the entire range of , piecewise
polynomial regression involves fitting separate low-degree polynomials over different
regions of .

For example, a pieacewise cubic with no knots is just a standard cubic polynomial.

A pieacewise cubic with a single knot at point  takes the form

Using more knots leads to a more flexible piecewise polynomial.

In general, we place  knots throughout the range of  and fit  polynomial
regression models.

X

X

c

L X L + 1

-
-

start with
.

- -

-

↳

By

yi= Boit Pri +P + +E
:

if : i.e. fiting diffract

polynomials to the data
,

one on subutE
Doat Bizk; +Baz + az? if iz and one on Subst XIC .

each polynomial can be fit using least squares.

if we place I knots -> It L+1 polynomials .

This leads to (d+1)[(+1) parameters to fit complexity/flexibility
"degrees of freedom" in the model

.
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3.3.22 Constraints and Splines Constraints and Splines

To avoid having too much flexibility, we can constrain the piecewise polynomial so that the
fitted curve must be continuous.

To go further, we could add two more constraints

In other words, we are requiring the piecewise polynomials to be smooth.

Each constraint that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, bu reducing the complexity of the resulting fit.

The fit with continuity and 2 smoothness contraints is called a spline.

A degree-  spline is d

-

i
.e .

there cannot be a jump
ot the knots

.

& first derivatives of piecewise polynomials are continuous at knots

& and deviatives of piecewise polynomials are continuous at knots
.

-

J

&
a piecewise degree -d polynomial with continuity inderivatives up

to degreed-1

at each knet.

grin
st justice

a

a

↑
= so

piecewise mbic polynomial /
cubic spline

piecewise cubic polynomial its ↓ its 1st ; 2nd derivative .

continuity .
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3.3.33 Spline Basis Representation Spline Basis Representation

Fitting the spline regression model is more complex than the piecewise polynomial
regression. We need to fit a degree  piecewise polynomial and also constrain it and its 

 derivatives to be continuous at the knots.

The most direct way to represent a cubic spline is to start with the basis for a cubic
polynomial and add one truncated power basis function per knot.

Unfortunately, splines can have high variance at the outer range of the predictors. One
solution is to add boundary constraints.

d

d − 1upto
We can use the basis model to represent a regression spline

bit
w

spire t
-/yi = B + ,b(xi) + zb2(i) +

. .. +
2 +3bx+3(xi) + di

for appropriate basis tructions b
,, by. ..., buts - ,

x?

-

e
=

Knot -
-O h(x,3) = (x - 3)i = \(x,

3) if xx2 where E is a knot
.

0 .

W .

=> yi
=

3 +

p,
xi + 2x +1xx+rsjh(xi , 3; )

+ Ei

Homework& This will lead to discontinuity in only the 3rd drivative at each 9 ; continuous first and seand

derivatives (and continuity) at 3 j leach knott
.

If : 2+4 (cubic spline / I knots) .

-
-is small or large.

-> "natural spline"

function required to be linear at boundary (where x is smaller than smallest knot and bigger
than biggest knot)

additional constraint produces more stable estinates at
the boundaries

.
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3.3.44 Choosing the Knots Choosing the Knots

When we fit a spline, where should we place the knots?

How many knots should we use?

3.3.55 Comparison to Polynomial Regression Comparison to Polynomial Regression

Regression spline is most flasible in regions that have a lot of knots (coefficients change more rapidly) .

> place knets where he think function will very rapidly and less where its more stable
.

more common in practice : place trem uniformly
to do this

,
choose desired degrees of freedom (flexibility) & use software to automatically place

corresponding # of knots at uniformes of the data
.

> how many degrees of freedom should we use ?

Use Cr ! Use L giving smallest CVMSE !

Regression splines often give superior results to polynomial regression .

Polynomial regression must use high degree to achieve same levelof flexibility (i. e.. X ")

but regression splines introduce flexibility through knots (degree fixed) => more stability . especially a deies)
.

~polynomial /
L degrees

Natural selee

extra flexibility of polynomial at boundary

produces
undesirable results

,
but the Splite

~ same flexibility (df) still looks reasonable.
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44 Generalized Additive Models Generalized Additive Models
So far we have talked about flexible ways to predict  based on a single predictor .

Generalized Additive Models (GAMs) provide a general framework for extending a
standard linear regression model by allowing non-linear functions of each of the variables
while maintaining additivity.

4.4.11 GAMs for Regression GAMs for Regression

A natural way to extend the multiple linear regression model to allow for non-linear
relationships between feature and response:

Y X

These approaches can be seen as extensions of simple linear regression

y = Bot B, X +E
.

-

-

I
flexibly predict Y on the basis of several predictors X

...., % .

- still additive models

can be und for regression or classification
.

linear regression : 2i= Bot ; +Balizt .... pip+E;

idea : replace each liner component Bizci; with a smooth non-liner function .

=> GAM :

y,
= Pr+25; big) + :

=

Bo
+ f

,
(x , ) + fz(xiz) +

.. .

+ fp(xip) + Ei

"Additive" because calculate a separate fi for each X; and add them together.

possibilities fo Fj :

- identity function (leadste liner regussient
-> polynomial functions

-> regression splines (natural splines).

· smoothing splines
not covered

,
see textbook ch-7

,
5-70b for details

.

- local linew regression]



10 4 Generalized Additive Models

The beauty of GAMs is that we can use our fitting ideas in this chapter as building blocks
for fitting an additive model.

Example: Consider the Wage data.

-

quantitative categoriach
- ↑
I

Wage
=

Bo * fr ./year) + flage) + f
,

(education) + 2

where fo is natural splice / M of

to is
natural splie of 5df

Is is identity of dummy variables created from education
.

easy to fit uy least squares by choosing appropriate nations .

.
so

8↑
pointe se gratassion! ·

H
u

Re

relationship between each variable and the response :

- age: holding your and education fixed
, wage is low for

young people and old people
,

highest for intermediate ages,

-> year : holding age
and education

, wage teds to increase / year (inflation ? )

- education : holding age and year fixed
,
& education is associated my wage .

we could easily replace f
; my diffect smooth furations to get diffrent fits .

just need to change the basis and use least squares.
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Pros and Cons of GAMs

Etages :

- Gams allow nonlinear fits fi to each predictor X
;

model non-liner relationships that liner

regression will miss .

-

If there is truly a necliner relationship, can allow for more accurate prediction.

- additte model-> we can still examine the effect of each X
;

on Y individually while

holding all other variables fixed.

=> GAMs provide a assful representation for interner/interpretation .

-

smoothness of fi for X;
Lambe summarized by df.

mitations:

-> model is restricted to be additive

i . e .
With may variables

, important interactions will be missed .

solution
: as with liver regression

,

we can manually celd interaction terms by including
-

additional predictors of the form XixX x

or add low dimension interaction functions of from fip(Xi : Xic)

↑
two-dimensional splies

Inet coread)
.

For fully general models
,

we have to look for even more flasible approaches like

rardom forests or boosted tres (next) .

GAMS providers compromise between line and fully mapaanatuic models.
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4.4.22 GAMs for Classification GAMs for Classification

GAMs can also be used in situations where  is categorical. Recall the logistic regression
model:

A natural way to extend this model is for non-linear relationships to be used.

Example: Consider the Wage data.

Y

->
y

puler
,

value
ow
?

assume
·generalizaties

exist

o
more

categories) .

-

low (**ex) =

Pot B ,
X

,
+ ...+pX

-
log-odds

ail p(x) = P(Y = 11X)

liner
in predictors

-

log(**x) = Po
+ f

,
(x

,) + ...

+ fp(xp)

logistic regressio- GAM

Let y = Wage > $250K (high errers)

we could fit a gar :

log(**(x) = B0+ filyea) + fulage) + As /education)
increasing↑

natural splies &

during encoding . ~/ education
:

-

df=

4 df = S

O
↓

I i
if you're nobody in data

under
32 : your u set w < Is education

ware
less

likely
met much relationship

and wage > 230k

of Beig
a high ener

(Mar

and
advention

held fixedl .


