Lab 10: Clustering

```
library(tidyverse) ## data manipulation
library(knitr) ## tables
## reproducible
```

0.1 Data Preparation

set.seed(445)

We will make some simulated data to see how clustering works.

Run the following code to create the data.

```
n <- 50
p <- 2
x <- matrix(rnorm(n * p), ncol = p)
## shift the center of one group
x[1:25, 1] <- x[1:25, 1] + 3
x[1:25, 2] <- x[1:25, 1] - 4</pre>
```

1. Make a scatterplot to inspect the data. Describe what you see.

0.2 K-means Clustering

We will use the kmeans function to perform K-means clustering. We can specify how many random initializations to use with the nstart parameter. For this lab, used nstart = 20.

- 1. Perform K-means clustering with K = 2.
- 2. Create a scatterplot of your data, colored by the resulting clustering. Describe what you see.
- 3. Repeat 1-2 with K = 3.
- 4. The total within sum of squares is available in the kmeans object under the name tot.withinss. Compare your two clusterings from 1. and 3. Which should you

choose?

0.3 Hierarchical Clustering

The hclust function implements hierarchical clustering in R.

- 1. Use the dist function to create a dissimilarity matrix corresponding to euclidean distance for the data you have simulated.
- 2. Create and plot the dendrograms for complete, single, and average linkage using the hclust function.
- 3. Cut each dendrogram to result in 2 clusters using the cutree function.
- 4. Create 4 scatterplots of your data, colored by the resulting clusterings from 3. Describe what you see.
- 5. Repeat 1-4. after scaling your data using scale. Are there any changes?