Lab 4: Model Assessment

We will use the Auto data set in the ISLR package.

```
library(ISLR)
library(tidyverse)
library(knitr)
library(tidymodels)
head(Auto) %>%
  kable()
```

mpg cylinders displacement horsepower weight acceleration year origin name							
18	8	307	130	3504	12.0	70	chevrolet 1 chevelle malibu
15	8	350	165	3693	11.5	70	buick 1 skylark 320
18	8	318	150	3436	11.0	70	1 plymouth satellite
16	8	304	150	3433	12.0	70	$1 \frac{\mathrm{amc}}{\mathrm{sst}}$ rebel
17	8	302	140	3449	10.5	70	$1rac{ m ford}{ m torino}$
15	8	429	198	4341	10.0	70	ford 1 galaxie 500

Before we begin, be sure to set the seed for reproducibility.

```
set.seed(445)
```

0.1 Validation Set Approach

- 1. Split the data into 50% training and 50% test data.
- 2. Fit a linear model of mpg on horsepower using your training data.
- 3. Estimate the test error by using test MSE.
- 4. Repeat steps 2-3 for a cubic and quadratic model. Which model would you pick?
- 5. Repeat steps 1-4 after reseting the seed

```
set.seed(42)
```

6. Did you get the same results? Is this what you expected to happen?

0.2 LOOCV

- 1. Get the estimate of test MSE for the linear model using LOOCV.
- 2. Repeat steps 2-3 for a cubic and quadratic model. Which model would you pick?

0.3 k-Fold CV

- 1. Using k = 10-fold CV, compute the k-fold CV estimate of the test MSE for polynomial models of order i = 1, ..., 10. (Hint: you can use the poly function in your formula to specify a polynomial model.)
- 2. Plot the estimated test MSE vs. the polynomial order.
- 3. Which of these models would you choose?

0.4 Bonus

- 1. Write your own k-fold CV function that will calculate CV for the KNN Regression model. You function should take as parameters
 - \circ CV k value
 - KNN K value
 - Data
 - A vector of names (character) of predictor columns
 - A character string of the response column

And return the estimated test MSE.

2. Use your function to estimate the test MSE using 10-fold CV for KNN models with

- K=1,5,10,20,100 of a model predicting mpg using the horsepower predictor variable in the Auto data set.
- 3. Compare your results to the previous k-Fold CV method.