
Tools: R and Rmarkdown
R (https://www.r-project.org) is a free, open source software environment for statistical
computing and graphics that is available for every major platform.

RStudio (https://rstudio.com) is an integrated development environment (IDE) for R. It is
also free, open source, and available for every major platform. It makes data analysis and
projects in R go a bit smoother.

https://xkcd.com/1513/

Alternative Text: I honestly didn’t think you could even USE emoji in variable names. Or
that there were so many different crying ones.

https://www.r-project.org/
https://rstudio.com/
https://xkcd.com/1513/

2

1 Getting Started with R
We can use R like an overgrown calculator.

[1] 74

[1] 3

[1] 1

[1] 3.375

simple math
5*(10 - 4) + 44

integer division
7 %/% 2

modulo operator (Remainder)
7 %% 2

powers
1.5^3

3

We can use mathematical functions.

[1] 2.718282

[1] 4.60517

[1] 2

[1] 1

[1] -1

[1] 1.570796

exponentiation
exp(1)

logarithms
log(100)

log(100, base = 10)

trigonometric functions
sin(pi/2)

cos(pi)

asin(1)

4 1 Getting Started with R

We can create variables using the assignment operator <-,

and then use those variables in our functions.

[1] 1.609438

[1] 160000

There are some rules for variable naming.

Variable names –

1. Can’t start with a number.

2. Are case-sensitive.

3. Can be the name of a prede�ned internal function or letter in R (e.g., c, q, t, C, D, F,
T, I). Try not to use these.

4. Cannot be reserved words that R (e.g., for, in, while, if, else, repeat, break, next).

create some variables
x <- 5
class <- 400
hello <- "world"

functions of variables
log(x)

class^2

1.1 Vectors 5

1.1 Vectors

Variables can store more than one value, called a vector. We can create vectors using the
combine (c()) function.

When we perform functions on our vector, the result is elementwise.

[1] 0.5 1.0 3.0 5.0 8.5

A vector must contain all values of the same type (i.e., numeric, integer, character, etc.).

We can also make sequences of numbers using either : or seq().

[1] 1 2 3 4 5

[1] 1 2 3 4 5

store a vector
y <- c(1, 2, 6, 10, 17)

elementwise function
y/2

sequences
a <- 1:5
a

b <- seq(1, 5, by = 1)
b

6 1 Getting Started with R

We can extract values by index.

[1] 3

Indexing is pretty powerful.

[1] 1 3 5

[1] 1 2 3

We can even tell R which elements we don’t want.

[1] 1 2 4 5

And we can index by logical values. R has logicals built in using TRUE and FALSE (T and F
also work, but can be overwritten). Logicals can result from a comparison using

< : “less than”
> : “greater than”
<= : “less than or equal to”
>= : “greater than or equal to”
== : “is equal to”
!= : “not equal to”

a[3]

indexing multiple items
a[c(1, 3, 5)]

a[1:3]

a[-3]

indexing by vectors of logicals
a[c(TRUE, TRUE, FALSE, FALSE, FALSE)]

1.1 Vectors 7

[1] 1 2

[1] TRUE TRUE FALSE FALSE FALSE

[1] 1 2

We can combine elementwise logical vectors in the following way:

& : elementwise AND
| : elementwise OR

[1] TRUE TRUE FALSE

[1] FALSE TRUE FALSE

indexing by calculated logicals
a < 3

a[a < 3]

c(TRUE, TRUE, FALSE) | c(FALSE, TRUE, FALSE)

c(TRUE, TRUE, FALSE) & c(FALSE, TRUE, FALSE)

8 1 Getting Started with R

There are two more useful functions for looking at the start (head) and end (tail) of a
vector.

[1] 1 2

[1] 4 5

We can also modify elements in a vector.

[1] 0 2 3 100 100

head(a, 2)

tail(a, 2)

a[1] <- 0
a[c(4, 5)] <- 100
a

1.1 Vectors 9

As mentioned, elements of a vector must all be the same type. So, changing an element of
a vector to a different type will result in all elements being converted to the most general
type.

[1] 0 2 3 100 100

[1] ":-(" "2" "3" "100" "100"

By changing a value to a string, all the other values were also changed.

There are many data types in R, numeric, integer, character (i.e., string), Date, and factor
being the most common. We can convert between different types using the as series of
functions.

[1] "1" "2" "3" "4" "5"

There are a whole variety of useful functions to operate on vectors. A couple of the more
common ones are length, which returns the length (number of elements) of a vector, and
sum, which adds up all the elements of a vector.

[1] 5

a

a[1] <- ":-("
a

as.character(b)

n <- length(b)
n

sum_b <- sum(b)
sum_b

10 1 Getting Started with R

[1] 15

We can then create some statistics!

But, we don’t have to.

[1] 3

[1] 1.581139

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 2 3 3 4 5

25% 75%
2 4

mean_b <- sum_b/n
sd_b <- sqrt(sum((b - mean_b)^2)/(n - 1))

mean(b)

sd(b)

summary(b)

quantile(b, c(.25, .75))

1.2 Data Frames 11

1.2 Data Frames

Data frames are the data structure you will (probably) use the most in R. You can think of
a data frame as any sort of rectangular data. It is easy to conceptualize as a table, where
each column is a vector. Recall, each vector must have the same data type within the vec-
tor (column), but columns in a data frame need not be of the same type. Let’s look at an
example!

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1

This is Anderson’s Iris data set (https://en.wikipedia.org/wiki/Iris_�ower_data_set),
available by default in R.

Some facts about data frames:

Structured by rows and columns and can be indexed
Each column is a variable of one type
Column names or locations can be used to index a variable
Advice for naming variables applys to naming columns
Can be speci�ed by grouping vectors of equal length as columns

look at top 6 rows
head(iris)

structure of the object
str(iris)

https://en.wikipedia.org/wiki/Iris_flower_data_set

12 1 Getting Started with R

Data frames are indexed (similarly to vectors) with [].

df[i, j] will select the element of the data frame in the ith row and the jth
column.
df[i,] will select the entire ith row as a data frame
df[, j] will select the entire jth column as a vector

We can use logicals or vectors to index as well.

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1
[19] 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0
[37] 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 6.4 6.9 5.5
[55] 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1
[73] 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6 5.5
[91] 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3 6.5 7.6 4.9 7.3
[109] 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2
[127] 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8
[145] 6.7 6.7 6.3 6.5 6.2 5.9

[1] 5.1

We can also select columns by name in two ways.

[1] setosa setosa setosa setosa setosa setosa
[7] setosa setosa setosa setosa setosa setosa

iris[1,]

iris[, 1]

iris[1, 1]

iris$Species

1.2 Data Frames 13

[25] setosa setosa setosa setosa setosa setosa
[31] setosa setosa setosa setosa setosa setosa
[37] setosa setosa setosa setosa setosa setosa
[43] setosa setosa setosa setosa setosa setosa
[49] setosa setosa versicolor versicolor versicolor versicolor
[55] versicolor versicolor versicolor versicolor versicolor versicolor
[61] versicolor versicolor versicolor versicolor versicolor versicolor
[67] versicolor versicolor versicolor versicolor versicolor versicolor
[73] versicolor versicolor versicolor versicolor versicolor versicolor
[79] versicolor versicolor versicolor versicolor versicolor versicolor
[85] versicolor versicolor versicolor versicolor versicolor versicolor
[91] versicolor versicolor versicolor versicolor versicolor versicolor
[97] versicolor versicolor versicolor versicolor virginica virginica
[103] virginica virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica virginica
[115] virginica virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica
[133] virginica virginica virginica virginica virginica virginica
[139] virginica virginica virginica virginica virginica virginica
[145] virginica virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica

[1] setosa setosa setosa setosa setosa setosa
[7] setosa setosa setosa setosa setosa setosa
[13] setosa setosa setosa setosa setosa setosa
[19] setosa setosa setosa setosa setosa setosa
[25] setosa setosa setosa setosa setosa setosa
[31] setosa setosa setosa setosa setosa setosa
[37] setosa setosa setosa setosa setosa setosa
[43] setosa setosa setosa setosa setosa setosa
[49] setosa setosa versicolor versicolor versicolor versico‑

iris[, "Species"]

14 1 Getting Started with R

lor
[55] versicolor versicolor versicolor versicolor versicolor versicolor
[61] versicolor versicolor versicolor versicolor versicolor versicolor
[67] versicolor versicolor versicolor versicolor versicolor versicolor
[73] versicolor versicolor versicolor versicolor versicolor versicolor
[79] versicolor versicolor versicolor versicolor versicolor versicolor
[85] versicolor versicolor versicolor versicolor versicolor versicolor
[91] versicolor versicolor versicolor versicolor versicolor versicolor
[97] versicolor versicolor versicolor versicolor virginica virginica
[103] virginica virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica virginica
[115] virginica virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica
[133] virginica virginica virginica virginica virginica virginica
[139] virginica virginica virginica virginica virginica virginica
[145] virginica virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica

To add columns, create a new vector that is the same length as other columns. We can ap-
pend new column to the data frame using the $ operator or the [] operators.

Sepal.Length Sepal.Width Petal.Length Petal.Width Species sepal_len_square
1 5.1 3.5 1.4 0.2 setosa 26.01
2 4.9 3.0 1.4 0.2 setosa 24.01
3 4.7 3.2 1.3 0.2 setosa 22.09
4 4.6 3.1 1.5 0.2 setosa 21.16
5 5.0 3.6 1.4 0.2 setosa 25.00
6 5.4 3.9 1.7 0.4 setosa 29.16

It’s quite easy to subset a data frame.

Sepal.Length Sepal.Width Petal.Length Petal.Width Species sepal_l‑

make a copy of iris
my_iris <- iris

add a column
my_iris$sepal_len_square <- my_iris$Sepal.Length^2
head(my_iris)

my_iris[my_iris$sepal_len_square < 20,]

1.2 Data Frames 15

en_square
9 4.4 2.9 1.4 0.2 setosa 19.36
14 4.3 3.0 1.1 0.1 setosa 18.49
39 4.4 3.0 1.3 0.2 setosa 19.36
43 4.4 3.2 1.3 0.2 setosa 19.36

We’ll see another way to do this in Lab 2.

We can create new data frames using the data.frame() function,

and we can change column names using the names() function.

[1] "NUMS" "lets" "cols"

nums lets cols
1 1 a green
2 2 b gold
3 3 c gold
4 4 d gold
5 5 e green

There are other data structures available to you in R, namely lists and matrices. We will
not cover these in the notes, but I encourage you to read more about them (https://facul-
ty.nps.edu/sebuttre/home/R/lists.html and https://faculty.nps.edu/sebuttre/home/R/ma-
trices.html).

df <- data.frame(NUMS = 1:5,
 lets = letters[1:5],
 cols = c("green", "gold", "gold", "gold", "green"))

names(df)

names(df)[1] <- "nums"

df

https://faculty.nps.edu/sebuttre/home/R/lists.html
https://faculty.nps.edu/sebuttre/home/R/matrices.html

16 1 Getting Started with R

1.3 Basic Programming

We will cover three basic programming ideas: functions, conditionals, and loops.

1.3.1 Functions

We have used many functions that are already built into R already. For example – exp(),
log(), sin(), rep(), seq(), head(), tail(), etc.

But what if we want to use a function that doesn’t exist?

We can write it!

Idea: We want to avoid repetitive coding because errors will creep in. Solution: Extract
common core of the code, wrap it in a function, and make it reusable.

The basic structure for writing a function is as follows:

Name
Input arguments (including names and default values)
Body (code)
Output values

Here is a more realistic �rst example:

Let’s test it out.

we store a function in a named value
function is itself a function to create functions!
we specify the inputs that we can use inside the function
we can specify default values, but it is not necessary
name <- function(input = FALSE) {
 # body code goes here

 # return output vaues
 return(input)
}

my_mean <- function(x) {
 sum(x)/length(x)
}

1.3 Basic Programming 17

[1] 8

[1] NA

Some advice for function writing:

1. Start simple, then extend.
2. Test out each step of the way.
3. Don’t try too much at once.

1.3.2 Conditionals

Conditionals are functions that control the �ow of analysis. Conditionals determine if a
speci�ed condition is met (or not), then direct subsequent analysis or action depending on
whether the condition is met (or not).

condition is a length one logical value, i.e. either TRUE or FALSE
We can use & and | to combine several conditions
! negates condition

For example, if we wanted to do something with na.rm from our function,

might be a good option.

my_mean(1:15)

my_mean(c(1:15, NA))

if(condition) {
 # Some code that runs if condition is TRUE
} else {
 # Some code that runs if condition is TRUE
}

if(na.rm) x <- na.omit(x) # na.omit is a function that removes NA
values

18 1 Getting Started with R

1.3.3 Loops

Loops (and their cousins the apply() function) are useful when we want to repeat the
same block of code many times. Reducing the amount of typing we do can be nice, and if
we have a lot of code that is essentially the same we can take advantage of looping. R of-
fers several loops: for, while, repeat.

For loops will run through a speci�ed index and perform a set of code for each value of the
indexing variable.

[1] 1
[1] 2
[1] 3

[1] "setosa 5.006"
[1] "versicolor 5.936"
[1] "virginica 6.588"

While loops will run until a speci�ed condition is no longer true.

for(i in index values) {
 # block of code
 # can print values also
 # code in here will most likely depend on i
}

for(i in 1:3) {
 print(i)
}

for(species in unique(iris$Species)) {
 subset_iris <- iris[iris$Species == species,]
 avg <- mean(subset_iris$Sepal.Length)
 print(paste(species, avg))
}

condition <- TRUE
while(condition) {
 # do stuff

1.3 Basic Programming 19

[1] "2020-08-24 15:14:55 MDT"

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

 # don't forget to eventually set the condition to false
 # in the toy example below I check if the current seconds is
divisible by 5

 time <- Sys.time()
 if(as.numeric(format(time, format = "%S")) %% 5 == 0) condition <-
FALSE

}
print(time)

we can also use while loops to iterate
i <- 1
while (i <= 5) {
 print(i)
 i <- i + 1
}

20 1 Getting Started with R

1.4 Packages

Commonly used R functions are installed with base R.

R packages containing more specialized R functions can be installed freely from CRAN
servers using function install.packages().

After packages are installed, their functions can be loaded into the current R session using
the function library().

Packages are contrbuted by R users just like you!

We will use some great packages in this class. Feel free to venture out and �nd your fa-
vorites (google R package + what you’re trying to do to �nd more packages).

1.5 Additional resources

You can get help with R functions within R by using the help() function, or typing ? be-
fore a function name.

Stackover�ow can be helpful – if you have a question, maybe somebody else has already
asked it (https://stackover�ow.com/questions/tagged/r).

R Reference Card (https://cran.r-project.org/doc/contrib/Short-refcard.pdf)

Useful Cheatsheets (https://www.rstudio.com/resources/cheatsheets/)

R for Data Science (https://r4ds.had.co.nz)

Advanced R (https://adv-r.hadley.nz)

https://stackoverflow.com/questions/tagged/r
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://www.rstudio.com/resources/cheatsheets/
https://r4ds.had.co.nz/
https://adv-r.hadley.nz/

21

2 Rmarkdown
Markdown is a particular type of markup language that is designed to produce documents
from text.

Markdown is becoming a standard. Many websites will generate HTML from Markdown
(e.g. GitHub, Stack Over�ow, reddit, …) and this course website is written in markdown
as well.

Markdown is easy for humans to read and write.

italic
bold

Header 1
Header 2
Header 3

* Item 1
* Item 2
 + Item 2a
 + Item 2b

1. Item 1
2. Item 2
3. Item 3
 + Item 3a
 + Item 3b

[linked phrase](http://example.com)

A friend once said:

> It's always better to give
> than to receive.

Rmarkdown is an authoring format that lets you incorporate the results from R code in
your documents.

22 2 Rmarkdown

You no longer have to copy/paste plots into your homework!

Documents built from Rmarkdown are fully reproducible, i.e. they are automatically re-
generated whenever embedded R code changes.

To include an R chunk in an Rmarkdown document, you use backticks.

In order to create a new Rmarkdown document in RStudio, File > New File > R
markdown.

There are many options that can affect the aesthetics of the resulting document and the
results and appearance of R chunks. For a list of chunk options, see
https://yihui.name/knitr/options/. Here are some useful ones:

echo - should the code be printed?
message and warning - should message and warnings be printed?
eval - should the code be evaluated?
fig.height & fig.width - �gure height and width
fig.cap - �gure caption

2.1 Additional resources

Documentation and cheat sheets (https://rmarkdown.rstudio.com)

R Markdown: The De�nitive Guide (https://bookdown.org/yihui/rmarkdown/)

https://yihui.name/knitr/options/
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/

