Chapter 10: Unsupervised Learning
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This chapter will focus on methods intended for the setting in which we only have a set of
features Xy, ..., X, measured on n observations.
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1 The Challenge of Unsupervised
Learning

Supervised learning is a well-understood area.
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In contrast, unsupervised learning is often much more challenging.
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Unsupervised learning is often performed as part of an exploratory data analysis.
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It can be hard to assess the results obtained from unsupervised learning methods.
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Techniques for unsupervised learning are of growing importance in a number of fields.
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2 Principal Components Analysis

We have already seen principal components as a method for dimension reduction.

Principal Components Analysis (PCA) refers to the process by which principal
components are computed and the subsequent use of these components to understand the
data.

Apart from producing derived variables forr use in supervised learning, PCA also serves
as a tool for data visualization.
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2.1 What are Principal Components?

Suppose we wish to visualize n observations with measurements on a set of p features as
part of an exploratory data analysis.

Goal: We would like to find a low-dimensional representation of the data that captures as
much of the information as possible.

PCA provides us a tool to do just this.

Idea: Each of the n observations lives in p dimensional space, but not all of these
dimensions are equally interesting.



2.1 What are Principal Compon...

The first principal component of a set of features X1, ..., X, is the normalized linear
combination of the features

that has the largest variance.

Given a n x p data set X, how do we compute the first principal component?
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There is a nice geometric interpretation for the first principal component.

After the first principal component Z; of the features has been determined, we can find the
second principal component, Zs. The second principal component is the linear combination
of Xi,..., X, that has maximal variance out of all linear combinations that are
uncorrelated with Z;.



2.1 What are Principal Compon...

Once we have computed the principal components, we can plot them against each other to
produce low-dimensional views of the data.

str (USArrests)

## 'data.frame': 50 obs. of 4 variables:

## S Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4

## $ Assault : int 236 263 294 190 276 204 110 238 335 211

## $ UrbanPop: int 58 48 80 50 91 78 77 72 80 60

## $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8

USArrests_pca <- USArrests |>
prcomp ( TRUE, TRUE)

summary (USArrests_pca)

## Importance of components:

## PC1 PC2 PC3 PC4
## Standard deviation 1.5749 0.9949 0.59713 0.41645
## Proportion of Variance 0.6201 0.2474 0.08914 0.04336
## Cumulative Proportion 0.6201 0.8675 0.95664 1.00000

tidy (USArrests_pca, "loadings") |>

pivot wider ( PC, value)

## # A tibble: 4 x 5

## column 1T t2° T3° t4°
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Murder -0.536 0.418 -0.341 0.649
## 2 Assault -0.583 0.188 -0.268 -0.743
## 3 UrbanPop -0.278 -0.873 -0.378 0.134
## 4 Rape -0.543 -0.167 0.818 0.0890

## plot scores + directions



biplot (USArrests pca)

2 Principal Components Analysis
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2.2 Scaling Variables

2.2 Scaling Variables prbly.
* have gue vuimee.

We’ve already talked about how when PCA is performed, the varriables should be
centered to have mean zero.

This is in contrast to other methods we’ve seen before.
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2.3 Uniqueness

Each principal component loading vector is unique, up to a sign flip.

Similarly, the score vectors are unique up to a sign flip.

2.4 Proportion of Variance Explained

We have seen using the USArrests data that e can summarize 50 observations in 4
dimensions using just the first two principal component score vectors and the first two
principal component vectors.

Question:

More generally, we are interested in knowing the proportion of vriance explained (PVE)
by each principal component.



2.5 How Many Principal Compo... 11

2.5 How Many Principal Components to Use

In general, a n x p matrix X has min(n — 1, p) distinct principal components.

Rather, we would like to just use the first few principal components in order to visualize or
interpret the data.
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We typically decide on the number of principal components required by examining a scree
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2.6 Other Uses for Principal Components

We’ve seen previously that we can perform regression using the principal component score
vectors as features for dimension reduction.

Many statistical techniques can be easily adapted to use the n x M matrix whose columns
are the first M << p principal components.
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This can lead to less noisy results.



3 Clustering

Clustering refers to a broad set of techniques for finding subgroups in a data set.
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For instance, suppose we have a set of n observations, each with p features. The n
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We may have reason to believe there is heterogeneity among the n observations.
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Both clustering and PCA seek to simplify the data via a small number of summaries.
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Since clustering is popular in many fields, there are many ways to cluster.
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e K-means clustering
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In general, we can cluster observations on the basis of features or we can cluster features
on the basis of observations.
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3.1 K-Means Clustering 15

3.1 K-Means Clustering

Simple and elegant approach to parition a data set into K distinct, non-overlapping
clusters.
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The K-means clustering procedure results from a simple and intuitive mathematical
problem. Let C1, ..., Ck denote sets containing the indices of observations in each cluster.
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The within-cluster variation for cluster Cy is a measure of the amount by which the
observations within a cluster differ from each other.
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3.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to specify the
\'M} number of clusters K. Hierarchical clustering is an alternative that does not require we
&)ﬁ"’" " commit to a particular K.
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Each leaf of the dendrogram represents one of the 100 simulated data points.

As we move up the tree, leaves begin to fuse into branches, which correspond to
observations that are similar to each other.

For any two observations, we can look for the point in the tree where branches containing
those two observations are first fused.

How do we get clusters from the dendrogram?
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The term hierarchical refers to the fact that clusters obtained by cutting the dendrogram
at a given height are necessarily nested within the clusters obtained by cutting the
dendrogram at a greater height.

3.2.2 Algorithm

First, we need to define some sort of dissimilarity metric between pairs of observations.

Then the algorithm proceeds iteratively.
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More formally,

One issue has not yet been addressed.

How do we determine the dissimilarity between two clusters if one or both of them
contains multiple observations?



3.3 Practical Considerations in ...

3.2.3 Choice of Dissimilarity Metric

3.3 Practical Considerations in Clustering

In order to perform clustering, some decisions should be made.

Each of these decisions can have a strong impact on the results obtained. What to do?
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