Chapter 1: Introduction

Statistical learning refers to a vast set of tools for understanding data.

https://xkcd.com/2341/

Alternative text: I vaguely and irrationally resent how useful WebPlotDigitizer is.

These tools can broadly be thought of as

Supervised on Unsupervised predicting or estimating inputs w/ no supervising outputs an output based on one can shill learn about the structure of data.

Examples:

Wage data

year	age	maritl	race	edu- cation	region	job- class	health	health_ins	logwage	wage
2006	18	1. Never Mar- ried	1. White	1. < HS Grad	2. Mid- dle At- lantic	1. Indus- trial	1. <=Good	2. No	4.318063	75.04315
2004	24	1. Never Mar- ried	1. White	4. Col- lege Grad	2. Mid- dle At- lantic	2. Infor- ma- tion	2. >=Very Good	2. No	4.255273	70.47602
2003	45	2. Mar- ried	1. White	3. Some Col- lege	2. Mid- dle At- lantic	1. Indus- trial	1. <=Good	1. Yes	4.875061	130.98218

Factors related to wages for a group of males from the Atlantic region of the United States. We might be interested in the association between an employee's age, education, and the calendar year on his wage.

Gene Expression Data

Consider the NCI60 data, which consists of 6,830 gene expression measurements for 64 cancer lines. We are interested ind determining whether there are **groups** among the cell lines based on their gene expression measurements.

1 A Brief History

model compl

Although the term "statistical machine learning" is fairly new, many of the concepts are not. Here are some highlights:

2 Notation and Simple Matrix Algebra

I'll try to keep things consistent notationally throughout this course. Please call me out if I don't!

n - number of distinct data points or observations thour sample.

p - # of variables available for making predictions. e.g. Waque data has 12 variables ellected for 3,000 people $\Rightarrow h=3,000$ p=02. $x_{ij} - value of j the variable for its observation.$ <math>i=1,...,hj=1,...,p.

$$\mathbf{X} - n \times p \quad \text{matrix} \quad \text{whose} \quad (i_{1j})^{n} \quad \text{elevel} \quad (s \quad \forall i_{j}) \quad \underbrace{\text{zlevel}}_{i_{j}} \quad \underbrace{\text{zlev$$

y - variable on which we wish to make a prediction, "response"

yi = in observation of y.

a, A, A - scalar, matrix, random variable

$$a \in \mathbb{R} \leftarrow indicates dimension.$$

$$\underline{a} \in \mathbb{R}^{d}$$

$$\underline{A} \in \mathbb{R}^{r \times S} = r \times s \text{ matrix.}$$
Matrix multiplication
$$\lim_{equal.} \lim_{equal.} \lim_{$$