
Chapter 3: Linear RegressionChapter 3: Linear Regression
Linear regression is a simple approach for supervised learning when the response is
quantitative. Linear regression has a long history and we could actually spend most of this
semester talking about it.

Although linear regression is not the newest, shiniest thing out there, it is still a highly
used technique out in the real world. It is also useful for talking about more modern
techniques that are generalizationsgeneralizations of it.

We will review some key ideas underlying linear regression and discuss the least squares
approach that is most commonly used to fit this model.

Linear regression can help us to answer the following questions about our Advertising
data:

-

GAMS

ridge regression,
Lasso , logistic regression , etc

.

-

-

1
. Istree a relationship between advertising and sales

i
.
e ,

should people spend money on ads?

2 . How strong is that relationship?

i
.

e
.

how well can we predict sales based on ads ?

3. Which media contribute to sales?

4
. How nacurately can we predict the effect of each medium on sales?

S
.
How accurately can

he pedic sales?

6
.

Is the relationship linear ?

7 .

Is there synergy among advertising media?

i
.
e .

is $50k on TV and $50K o radio better than $100K me radio on TV alone ?
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11 Simple Linear Regression Simple Linear Regression
Simple Linear Regression is an approach for predictiong a quantitative response  on the
basis of a single predictor variable .

It assumes:

Which leads to the following model:

For example, we may be interested in regressing sales onto TV by fitting the model

Once we have used training data to produce estimates  and , we can predict future
sales on the basis of a particular TV advertising budget.

1.11.1 Estimating the Coefficients Estimating the Coefficients

In practice,  and  are unknownunknown, so before we can predict , we must use our training
data to estimate them.

Y

X

β̂0 β̂1

β0 β1 ŷ

4

-

-> approximately linear relationship between X and Y

- random error has mean zero and constant variance
.

-> random error is Normally distributed.

linear relationship
y =Ax + E

zwN(0 ,
67

sales = t, oTV + 2

↑

unknown constants

"parameters" ,
"model coefficials"

- 8 8
-

-

y I Br + B,0
I

1 -

aticalget

predicta

e

"fit the model"

"train the model"
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Let  represent  observation pairs, each of which consists of a
measurement of  and .

GGoal:oal: Obtain coefficient estimates  and  such that the linear model fits the available
data well.

The most common approach involves minimizing the least squares criterion.

The least squares approach results in the following estimates:

(x1, y1), … , (xn, yn) n

X Y

β̂0 β̂1

β̂1 =

β̂0 =

trainthe

In advertising dutc :

X
= TV ad budget

y = Sales

n
= 200 observations

I 11

--

i. e . y- + ,
x: for = 1

, --

we want to find an intercept So and slope ,
S.
t

.

the resultly line is "close" to tren= 200 points.

We will talk about oper
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x
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6

.

ei
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choose and B to minimize RSS
.
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e
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We can get these estimates using the following commands in R and tidymodels:

## 
## Call:
## stats::lm(formula = sales ~ TV, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.3860 -1.9545 -0.1913  2.0671  7.2124 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 7.032594   0.457843   15.36   <2e-16 ***
## TV          0.047537   0.002691   17.67   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.259 on 198 degrees of freedom
## Multiple R-squared:  0.6119, Adjusted R-squared:  0.6099 
## F-statistic: 312.1 on 1 and 198 DF,  p-value: < 2.2e-16

library(tidymodels) ## load library

## load the data in
ads <- read_csv("../data/Advertising.csv", col_select = -1) 

## fit the model
lm_spec <- linear_reg() |>
  set_mode("regression") |>
  set_engine("lm")

slr_fit <- lm_spec |>
  fit(sales ~ TV, data = ads)

slr_fit |>
  pluck("fit") |>
  summary()

--

alternately
!

use
Di

mochtspecification
-

OLS

-
model formula

&

specify data frame.

Y~ A

"regress Y ou X
"

Bo ⑧Pr



1.2 Assessing Accuracy 5

1.1.22 Assessing Accuracy Assessing Accuracy

Recall we assume the true relationship between  and  takes the form

If  is to be approximated by a linear function, we can write this relationship as

and when we fit the model to the training data, we get the following estimate of the
population model

But how close this this to the truth?

In general,  is not known, so we estimate it with the residual standard error, 
.

We can use these standard errors to compute confidence intervals and perform hypothesis
tests.

X Y

f

σ2

RSE = √RSS/(n − 2)

y = f(x) + E
&

unknown
*

mean-zero random term
.

->

average increase in y associated / I unit increase in X

I catch all for what we miss o the simple model

population y =

Bo + X + E8 ↳ true relationship may not be linear

regression is
may

be missing importa
variables that cause variation in Y.

line. ↑expected value of Y whe x= 0 measurement error.

least squares y = B + B,
x

line .

measure / standard error.

Var() = (sz(p)) = or + )

vor(pi) : [SE(B , >] =
6 [ii]

-var(a)
* =

-

& residual sun of squares.

n - 1 - -

- of o ,

95% C fr p.:, 2St( , )

for : = 28z(po) .

Hypothesis test :

Ho : there is no relationship between XY <)
Ho : , = 0

Ha: There is a relationship between X
.

Y Hai , FO .

?: Is B ,
fo enough away from O to be confident it is nonzero? How for is enough

? depends on SECB, ) !

1 compute Prob(observing any number equal te /t1 or lagen in als value)

t = 150 -P-vale .

-!
n - 2 => small p-rahe means highly unlikely to see this data given Ho

= reject Ho !
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Once we have decided that there is a significant linear relationship between  and  that
is captured by our model, it is natural to ask

To what extent does the model fit the data?

The quality of the fit is usually measured by the residual standard error and the 
statistic.

RRSESE: Roughly speaking, the RSE is the average amount that the response will deviate
from the true regression line. This is considered a measure of the lack of fit of the model to
the data.

: The RSE provides an absolute measure of lack of fit, but is measured in the units of .
So, we don’t know what a “good” RSE value is!  gives the proportion of variation in 
explained by the model.

## 
## Call:
## stats::lm(formula = sales ~ TV, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.3860 -1.9545 -0.1913  2.0671  7.2124 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 7.032594   0.457843   15.36   <2e-16 ***
## TV          0.047537   0.002691   17.67   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.259 on 198 degrees of freedom
## Multiple R-squared:  0.6119, Adjusted R-squared:  0.6099 
## F-statistic: 312.1 on 1 and 198 DF,  p-value: < 2.2e-16

X Y

R2

R2 Y

R2 Y

slr_fit |>
  pluck("fit") |>
  summary()

"goodness-of-fit"

-

by will always be between O ad I
.

advertisingexample

y ~X

Ho:=O vs.
Ha:O

i =

0
.

1 .

r ,

sti⑦
RSE

*
-

↓
R

*
=

proportion of raiability in y explained by

a linear relationship m X .
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22 Multiple Linear Regression Multiple Linear Regression
Simple linear regression is useful for predicting a response based on one predictor
variable, but we often have more than onemore than one predictor.

How can we extend our approach to accommodate additional predictors?

We can give each predictor a separate slope coefficient in a single model.

We interpret  as the “average effect on  of a one unit increase in , holding all other
predictors fixed”.

In our Advertising example,

βj Y Xj

X

-

- We could run separate SLR for each predictor.

But how to make a single prediction of y
based on levels of all predictors ?

Also each model ignores the other podictors ...
What if they are related?

↳ misleading results .

solution :
- -

y =

Do +B ,
X

,+PaXzt ...
+

pXp + E

mean
liver relationship

-

sales =

Bot BTV + Batadio + B , newspaper +
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2.2.11 Estimating the Coefficients Estimating the Coefficients

As with the case of simple linear regression, the coefficients  are unknown
and must be estimated. Given estimates , we can make predictions using the
formula

The parameters are again estimated using the same least squares approach that we saw in
the context of simple linear regression.

## 
## Call:
## stats::lm(formula = sales ~ ., data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8277 -0.8908  0.2418  1.1893  2.8292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.938889   0.311908   9.422   <2e-16 ***
## TV           0.045765   0.001395  32.809   <2e-16 ***
## radio        0.188530   0.008611  21.893   <2e-16 ***
## newspaper   -0.001037   0.005871  -0.177     0.86    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8956 
## F-statistic: 570.3 on 3 and 196 DF,  p-value: < 2.2e-16

β0, β1, … , βp

β̂0, β̂1, … , β̂p

# mlr_fit <- lm_spec |> fit(sales ~ TV + radio + newspaper, data = ads) 
mlr_fit <- lm_spec |> 
  fit(sales ~ ., data = ads) 

mlr_fit |>
  pluck("fit") |>
  summary()

-

using frailty data .

now
instead y = B + B,

x
,+ + .. . + p .

·
line ,

of are
fitig -

we

a

hype plane
.

S zways
to

mod .C fit same

0
Y ~ every other column

.

e

data

! -i
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2.2.22 Some Important Questions Some Important Questions

When we perform multiple linear regression we are usually interested in answering a few
important questions:

1. 

2. 

3. 

4. 

2.2.12.2.1 Is there a relationship between response and predictors? Is there a relationship between response and predictors?

We need to ask whether all of the regression coefficients are zero, which leads to the
following hypothesis test.

This hypothesis test is performed by computing the -statistic

H0 :
 

Ha :

F

F =

Is at least one of the predictors X...., Xp useful in predicting the response?

Do all predictors help explain the responsey,
or only a subset ?

How well does model fit the data?

Given a set of predictor values
,

what
response

would we predict and how accurate is our

prediction ?

-

vslope
=

B ,

=

B=
.. . =

p
=

0

at least one Bj is non-zero
.

=

S
varicel

explained it

- CTSS-RSS)/4
Fp , mp

-

RSS/(n - p
- 1)

variance

/

unexplained.

If this is large (much larger than 1)
/

evidence against Ho
,

i
.

e .

evidence the is some relationship .
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2.2.2.22.2 Deciding on Important Variables Deciding on Important Variables

After we have computed the -statistic and concluded that there is a relationship between
predictor and response, it is natural to wonder

Which predictors are related to the response?

We could look at the -values on the individual coefficients, but if we have many variables
this can lead to false discoveries.

Instead we could consider variable selection. We will revisit this in Ch. 6.

2.2.2.32.3 Model Fit Model Fit

Two of the most common measures of model fit are the RSE and . These quantities are
computed and interpreted in the same way as for simple linear regression.

Be careful with using these alone, because  will always increasealways increase as more variables are
added to the model, even if it’s just a small increase.

## 
## Call:
## stats::lm(formula = sales ~ ., data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8277 -0.8908  0.2418  1.1893  2.8292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.938889   0.311908   9.422   <2e-16 ***
## TV           0.045765   0.001395  32.809   <2e-16 ***
## radio        0.188530   0.008611  21.893   <2e-16 ***
## newspaper   -0.001037   0.005871  -0.177     0.86    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8956 
## F-statistic: 570.3 on 3 and 196 DF,  p-value: < 2.2e-16

F

p

R2

R2

# model with TV, radio, and newspaper
mlr_fit |> pluck("fit") |> summary()

~
forward selection ,

- backwards selection,

O LASSO
-

en

How to avoid overfitury?

use test data ! Ch
o

S
.

↓
dividue proper

⑧
-↳

F-test

Ho: = :... =

p

= 0

Haj f0j = 1
, --
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## 
## Call:
## stats::lm(formula = sales ~ TV + radio, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.7977 -0.8752  0.2422  1.1708  2.8328 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.92110    0.29449   9.919   <2e-16 ***
## TV           0.04575    0.00139  32.909   <2e-16 ***
## radio        0.18799    0.00804  23.382   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.681 on 197 degrees of freedom
## Multiple R-squared:  0.8972, Adjusted R-squared:  0.8962 
## F-statistic: 859.6 on 2 and 197 DF,  p-value: < 2.2e-16

It may also be useful to plot residuals to get a sense of the model fit.

# model without newspaper
lm_spec |> fit(sales ~ TV + radio, data = ads) |>
  pluck("fit") |> summary()

ggplot() +
  geom_point(aes(mlr_fit$fit$fitted.values, mlr_fit$fit$residuals))

-

-

&
barely decreased when we took out newspaper => not

contributing much.

-

2 ,
=

y ,
- y ; ,

,
(9 :] =

0
, Var[4] = 62

Ei , independent of A

-ei

-

-
Or

1
Yi pattern in residuals :

wartom raise around O
,

no patter maybe model assumptions
not met

- not centerd at zero (missing
covariate?)

(systematic relationship in

errors = missing covariate?)
-

non
constat via e

is transform y (squt or log)
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33 Other Considerations Other Considerations

3.3.11 Categorical Predictors Categorical Predictors

So far we have assumed all variables in our linear model are quantitiative.

For example, consider building a model to predict highway gas mileage from the mpg data
set.

## # A tibble: 6 × 11
##   manufacturer model displ  year   cyl trans      drv     cty   hwy 
fl    class 
##   <chr>        <chr> <dbl> <int> <int> <chr>      <chr> <int> <int> 
<chr> <chr> 
## 1 audi         a4      1.8  1999     4 auto(l5)   f        18    29 
p     compa…
## 2 audi         a4      1.8  1999     4 manual(m5) f        21    29 
p     compa…
## 3 audi         a4      2    2008     4 manual(m6) f        20    31 
p     compa…
## 4 audi         a4      2    2008     4 auto(av)   f        21    30 
p     compa…
## 5 audi         a4      2.8  1999     6 auto(l5)   f        16    26 
p     compa…
## 6 audi         a4      2.8  1999     6 manual(m5) f        18    26 
p     compa…

head(mpg)

library(GGally)

mpg %>% 
  select(-model) %>% # too many models
  ggpairs() # plot matrix

what to do when

- Xi categorical ?

-

↑
make A plots to look at each pair

of variables
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100K
at type dooses

of
variables

and

appropriate
splot

type
.
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To incorporate these categorical variables into the model, we will need to introduce 
dummy variables, where  the number of levels in the variable, for each qualitative
variable.

For example, for drv, we have 3 levels: 4, f, and r.

## 
## Call:
## stats::lm(formula = hwy ~ displ + cty + drv, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6499 -0.8764 -0.3001  0.9288  4.8632 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.42413    1.09313   3.132  0.00196 ** 
## displ       -0.20803    0.14439  -1.441  0.15100    
## cty          1.15717    0.04213  27.466  < 2e-16 ***
## drvf         2.15785    0.27348   7.890 1.23e-13 ***
## drvr         2.35970    0.37013   6.375 9.95e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.49 on 229 degrees of freedom
## Multiple R-squared:  0.9384, Adjusted R-squared:  0.9374 
## F-statistic: 872.7 on 4 and 229 DF,  p-value: < 2.2e-16

k − 1
k =

lm_spec |>
  fit(hwy ~ displ + cty + drv, data = mpg) |>
  pluck("fit") |>
  summary()

-

-k
= 3

sin= E !
if it car is FWD

Po
=

ar haeotherwis

siz = E
if it car is RWD

17 Br
= distence in

otherwise .

arg huy btr FWD. YWD

E,
+E: if incar is Fre

yi
=

Bu + iiitBakiz+Ei= B2 + 3
: if ith car is RWD

B2
= diffrence in

Bot E; if ith car is 4WD arghuy Stu RWD' 4WD
.

yo x
,

X 2 X 3

Tategorical .

E
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3.3.22 Extensions of the Model Extensions of the Model

The standard regression model provides interpretable results and works well in many
problems. However it makes some very strong assumptions that may not always be
reasonable.

Additive AssumptionAdditive Assumption

The additive assumption assumes that the effect of each predictor on the response is not
affected by the value of the other predictors. What if we think the effect should depend on
the value of another predictor?

## 
## Call:
## stats::lm(formula = sales ~ TV + radio + TV * radio, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3366 -0.4028  0.1831  0.5948  1.5246 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.750e+00  2.479e-01  27.233   <2e-16 ***
## TV          1.910e-02  1.504e-03  12.699   <2e-16 ***
## radio       2.886e-02  8.905e-03   3.241   0.0014 ** 
## TV:radio    1.086e-03  5.242e-05  20.727   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9435 on 196 degrees of freedom
## Multiple R-squared:  0.9678, Adjusted R-squared:  0.9673 
## F-statistic:  1963 on 3 and 196 DF,  p-value: < 2.2e-16

lm_spec |>
  fit(sales ~ TV + radio + TV*radio, data = ads) |>
  pluck("fit") |>
  summary()

-

-

* model
. (linea a additite)

.

constant error variance

uncorrelated errors mX is

-

-

interaction term .

-
y =

P
+

B ,x ,
+ 2xz + >X ,

xz
+ E

=

B + ( ,

+ P3Xz)X ,
+ P2x2 + 3

-

charges / value of Xa

Pa significant
N

3

-

↓
↑2 =

.89without big increase => maybe gard idea

If we add intraction tims be sure to keep original variables
,

otherwise very confusing

to interpret results
.

An increase of $1
,
000 in radio advertising will be associated of an average increase in sales of
~ -

(P2 +BxTV) $1000 = 29 + 10/XTV
-
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Alternatively:

## ══ Workflow [trained] 
══════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: linear_reg()
## 
## ── Preprocessor 
────────────────────────────────────────────────────────────────
## 1 Recipe Step
## 
## • step_interact()
## 
## ── Model 
───────────────────────────────────────────────────────────────────────
## 
## Call:
## stats::lm(formula = ..y ~ ., data = data)
## 
## Coefficients:
## (Intercept)           TV        radio   TV_x_radio  
##    6.750220     0.019101     0.028860     0.001086

rec_spec_interact <- recipe(sales ~ TV + radio, data = ads) |>
  step_interact(~ TV:radio)

lm_wf_interact <- workflow() |>
  add_model(lm_spec) |>
  add_recipe(rec_spec_interact)

lm_wf_interact |> fit(ads)

adtradit-
-
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LLinearity Assumptioninearity Assumption

The linear regression model assumes a linear relationship between response and
predictors. In some cases, the true relationship may be non-linear.

ggplot(data = mpg, aes(displ, hwy)) +
  geom_point() +
  geom_smooth(method = "lm", colour = "red") +
  geom_smooth(method = "loess", colour = "blue")

-

-

"
liner
- relation
L

sup

How to include nonlinear terms in model ?
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## 
## Call:
## stats::lm(formula = hwy ~ displ + I(displ^2), data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6258 -2.1700 -0.7099  2.1768 13.1449 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  49.2450     1.8576  26.510  < 2e-16 ***
## displ       -11.7602     1.0729 -10.961  < 2e-16 ***
## I(displ^2)    1.0954     0.1409   7.773 2.51e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.423 on 231 degrees of freedom
## Multiple R-squared:  0.6725, Adjusted R-squared:  0.6696 
## F-statistic: 237.1 on 2 and 231 DF,  p-value: < 2.2e-16

3.3.33 Potential Problems Potential Problems

1. Non-linearity of response-predictor relationships 

2. Correlation of error terms 

3. Non-constant variance of error terms 

4. Outliers

lm_spec |>
  fit(hwy ~ displ + I(displ^2), data = mpg) |>
  pluck("fit") |> summary()

"Identity
function"

↓
-

significat

-
model explains2

significat aut

Be careful adding higher lad polynomial powers -> will lead to overfilly ?
rey bad for ofvariability

prediction on edges of

space ,
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44  -Nearest Neighbors-Nearest Neighbors
In Ch. 2 we discuss the differences between parametric and nonparametric methods.
Linear regression is a parametric method because it assumes a linear functional form for 

.

A simple and well-known non-parametric method for regression is called -nearest
neighbors regression (KNN regression).

Given a value for  and a prediction point , KNN regression first identifies the 
training observations that are closest to  ( ). It then estimates  using the average
of all the training responses in ,

K

f(X)

K

K x0 K

x0 N0 f(x0)
N0

set.seed(445) #reproducibility

## generate data
x <- rnorm(100, 4, 1) # pick some x values
y <- 0.5 + x + 2*x^2 + rnorm(100, 0, 2) # true relationship
df <- data.frame(x = x, y = y) # data frame of training data

for (k in seq(2, 10, by = 2)) {
  nearest_neighbor(mode = "regression", neighbors = k) |>
    fit(y ~ x, data = df) |>
    augment(new_data = df) |>
    ggplot() +
    geom_point(aes(x, y)) +
    geom_line(aes(x, .pred), colour = "red") +
    ggtitle(paste("KNN, k = ", k)) +
    theme(text = element_text(size = 30)) -> p
    
  print(p)
}

lm_spec |>
  fit(y ~ x, df) |>
  augment(new_data = df) |>
  ggplot() +
    geom_point(aes(x, y)) +
    geom_line(aes(x, .pred), colour = "red") +
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    ggtitle("Simple Linear Regression") +
    theme(text = element_text(size = 30)) # slr plot


