"linear discriminant analysis" 3 LDA

Logistic regression involves direction modeling P(Y = k | X = x) using the logistic function for the case of two response classes. We now consider a less direct approach.

Idea:

Model the distribution of the predictors X separately in each of its reporse classes (given Y) and then use Bayes theorems to flip tase around and get estimates for Q(1, 1) $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ P(Y = k | X = x).

Why do we need another method when we have logistic regression?

* 1. We might have more then 2 response classes.

even with just 2 class in pri 2 class in pri

2. If n is small and the distribution of the predictors is approximately normal the each class, LDA is more stable than Logistic regression.

3. When classes are well-separated the parameter estimates in Logistic regression are supprisingly untable.

3.1 Bayes' Theorem for Classification

Suppose we wish to classify an observation into one of K classes, where $K \ge 2$. Categorical Y with K classes (possible distinct on unordered values).

The - overall or "proor" probability that a randonly chosen overvotion falls into the lass.

-> could know this from domain knowledge could estimate from praining data

$$f_{k}(x) = P(X = x | Y = k) \stackrel{\text{errows}}{\text{case}} in \text{ disente}$$

$$f_{k}(x) = P(X = x | Y = k) \stackrel{\text{errows}}{\text{true}} in \text{ disente}$$

$$f_{k}(x) = P(X = x) \stackrel{\text{rows}}{\text{true}} in \text{ for a small region around } x \text{ given } Y = k \quad (cts).$$

$$(and it in d) \quad of \quad X \quad for \quad a \quad obsumation \quad that \quad Games \quad from \quad class \quad |c.$$

$$A \quad B \quad f(X = x) = \frac{P(X = k) \quad P(X = x | Y = k)}{T_{k} \quad f_{k}(x)} \quad Bayes \quad theorem \quad Use \quad the \quad seme \quad abbreviation \quad as \quad before \quad abbreviation \quad as \quad before \quad f(X = x) = P(Y = k | X = x) \quad f(X = x) \quad f(X = x) \quad f(X = x))$$

$$P(X = x) \quad P(X = x) \quad F(X = x) \quad f(X = x) \quad f(X = x) \quad f(X = x)) \quad f(X = x) \quad f(X = x) \quad f(X = x) \quad f(X = x)) \quad f(X = x) \quad f(X = x)) \quad f(X = x) \quad f(X =$$

In general, estimating π_k is easy if we have a random sample of Y's from the population.

Estimating $(f_k(x))$ is more difficult unless we assume some particular forms.

Notation

could

get for domain lano-ledge

Let's (for now) assume we only have 1 predictor. We would like to obtain an estimate for $f_k(x)$ that we can plug into our formula to estimate $p_k(x)$. We will then classify an observation to the class for which $\hat{p}_k(x)$ is greatest. $\pi_k f_k(x)$

vation to the class for which $\hat{p}_k(x)$ is greatest. $\underbrace{\tau_k f_k(x)}_{z_k^k, \tau_k f_k(x)}$ Suppose we assume that $f_k(x)$ is normal. In the one-dimensional setting, the normal density takes the form $\underbrace{f_k(x)}_{f_k(x)}$

$$f_{k}(x) = \frac{1}{12\pi \sigma_{n}^{2}} \exp\left(-\frac{1}{26_{k}}\left(x - \mu_{k}\right)^{2}\right)$$

Variance parameter for kth class

Variance parameter for kth class

Let's also (pr now) assume $6_1^2 = ... = 6_K^2 = 6^2$ (share d variance term). Plugging this into our formula to estimate $n_1(r)$

Plugging this into our formula to estimate $p_k(x)$,

$$p_{k}(x) = \frac{T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}{\sum_{k=1}^{K} T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}$$

$$= \frac{T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}{\int_{k=1}^{K} T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}$$

$$= \frac{T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}{\int_{k=1}^{K} T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}$$

$$= \frac{T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}{\int_{k=1}^{K} T_{k} \sqrt{2T_{6}^{2}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}$$

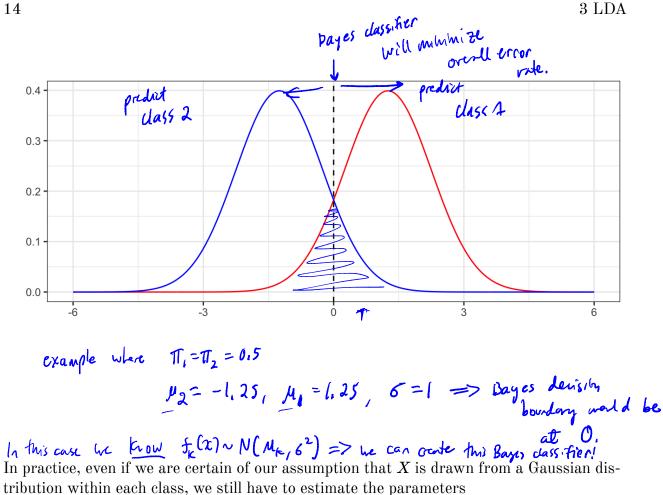
We then assign an observation X = x to the class which makes $p_k(x)$ the largest. This is equivalent to

assign obs. to class which makes

$$\frac{\delta_{k}(x) = x \frac{A_{k}}{6^{2}} - \frac{A_{k}^{2}}{26^{2}} + \log(T_{k}) = \frac{C_{k}}{2} \frac{A_{k}}{6} - \frac{A_{k}}{26^{2}} + \log(T_{k}) = \frac{C_{k}}{6} \frac{A_{k}}{6} + \log(T_{k}) = \frac{C_{k}}{6} + \log(T_{k}$$

•

Example 3.1 Let K = 2 and $\pi_1 = \pi_2$. When does the Bayes classifier assign an observation to class 1?

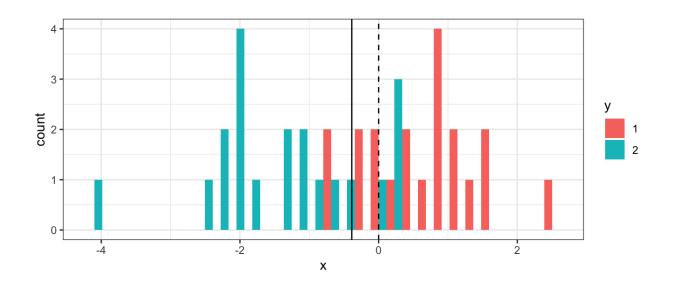


```
\mu_1,\ldots,\mu_K,\pi_1,\ldots,\pi_K,\sigma^2.
```

The *linear discriminant analysis* (LDA) method approximated the Bayes classifier by plugging estimates in for π_k, μ_k, σ^2 .

Sometimes we have knowledge of class membership probabilities π_1, \ldots, π_K that can be used directly. If we do not, LDA estimates π_k using the proportion of training observations that belong to the kth class.

The LDA classifier assignes an observation X = x to the class with the highest value of



##		ľ	pred	
##	У		1	2
##		1	18966	1034
##		2	3855	16145

The LDA test error rate is approximately 12.22% while the Bayes classifier error rate is approximately 10.52%.

The LDA classifier results from assuming that the observations within each class come from a normal distribution with a class-specific mean vector and a common variance σ^2 and plugging estimates for these parameters into the Bayes classifier.