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3 LDA
Logistic regression involves direction modeling  using the logistic funcÅ
tion for the case of two response classes. We now consider a less direct approach.

Idea:

Why do we need another method when we have logistic regression?

1. 

2. 

3. 

" linear discriminant analysis "

÷
-

Model the distribution of the predictors X separately in each of the response
classes

(given Y) and then use Bayes theorem to flip these around and get
estimates for
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if u is small and the distribution of the predictors is approximately
normal in each class, LDA is more stable than logistic regression .

then classes are
well - separated , the parameter estimates in

logistic regression are suprisigly unstable
.
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�µ� BayesÏ Theorem for Classi{cation

Suppose we wish to classify an observation into one of  classes° where µ

In general° estimating  is easy if we have a random sample of Ïs from the populationµ

Estimating  is more dif{cult unless we assume some particular formsµ

notation - O
✓ categorical Y with k classes ( possible distinct and unordered values).

g.

- overall or
"

prior
" probability that a randomly chosen

aerator falls into the

Kth class,

→ could know this from domain knowledge
could estimate from training data

= P(X -- x / y=p)
← only works in discrete

case

[ probability that X falls into a small region
around x gim Y -k Cots) .

conditional

density function of X for an observation that comes from class K .
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- Bayes theorem
abbreviation as before
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" posterior probability

" that an observation
B

X - x comes from The Kth class.

-could
get from

diamonds Computing the fraction of training observations that come from the Kth class
.

←

If we can estimate fktk) we can classifier that is close to

the
"

best
" classifier (more later).
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LetÏs Áfor nowÂ assume we onlw have  predictorµ We would like to obtain an estimate for 
 that we can plug into our formula to estimate µ We will then classifw an obserÅ

vation to the class for which  is greatestµ

Suppose we assume that  is normalµ In the oneÅdimensional setting° the normal denÅ
sitw takes the form

Plugging this into our formula to estimate °

We then assign an observation  to the class which makes  tthe largestµ This is
equivalent to

Example �µ� Let  and µ When does the Bawes classi{er assign an observaÅ
tion to class ¶

" optimal
"

classifier : assuming we know pack) =p(y -- k IX --x)

- assignment to class with the highest posterior probability
Pkcx ) .

- "

Bayes classifier
" and is known to beoptimal in terms of

overall error rate.
i. e . we can do no better than the Bayes classifier

.
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estimating the Bages classifier ! EI , Hefel").

-

Gaussian

tidal -- ftp.expf-ztqcx-uqY)
I mean parameter for Kth class

variance parameter
fer kN class

let's also (for now) assume of = . . .
= q: = o

' ( shared variance term) .
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to class which makes f Audi!! "

8,64 -- ↳¥ - III. t log Ctia ) is linear in x
-

⇒ " Linear discriminant

largest. analysis "
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will make this

when 8
,
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happen ?
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,
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-natural

← Bayes decision boundary.
x >Mtz ⇒yen we will predict class 1.
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In practice° even if we are certain of our assumption that  is drawn from a Gaussian disÅ
tribution within each class° we still have to estimate the parameters 

µ

The linear discriminant analysis ÁLDAÂ method approximated the Bayes classi{er by plugÅ
ging estimates in for µ

Sometimes we have knowledge of class membership probabilities  that can be
used directlyµ If we do not° LDA estimates  using the proportion of training observaÅ
tions that belong to the th classµ

The LDA classi{er assignes an observation  to the class with the highest value of

Payes
classifier
will minimizeovert error

I rate .

predict ← → predict
class 2 class A
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example where IT,
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92=-1,25 , Ma
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- la 25
,
6=1 ⇒ Bayes decision

- - boundary world be

In this case we knew than N ( Mk , 62) ⇒ we can create this Bay, Easts.-fief!
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##    pred 
## y       1     2 
##   1 18966  1034 
##   2  3855 16145

The LDA test error rate is approximately 12µ22æ while the Bayes classi{er error rate is
approximately 10µ�2æµ

The LDA classi{er results from assuming that the observations within each class come
from a normal distribution with a classÅspeci{c mean vector and a common variance 
and plugging estimates for these parameters into the Bayes classi{erµ


