"linear discriminant analysis" 3 LDA

Logistic regression involves direction modeling P(Y = k | X = x) using the logistic function for the case of two response classes. We now consider a less direct approach.

Idea:

Model the distribution of the predictors X separately in each of its reporse classes (given Y) and then use Bayes theorem to flip tase around and get estimates for Q(1, 1) $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ P(Y = k | X = x).

Why do we need another method when we have logistic regression?

* 1. We might have more then 2 response classes.

even with just 2 class in pri 2 class in pri

2. If n is small and the distribution of the predictors is approximately normal threach class, LDA is more stable than Logistic regression.

3. When classes are well-separated the parameter estimates in Logistic regression are supprisingly untable.

3.1 Bayes' Theorem for Classification

Suppose we wish to classify an observation into one of K classes, where $K \ge 2$. Categorical Y with K classes (possible distinct on unordered values).

The - overall or "prov" probability that a randonly chosen overvotion fulls into the licture class,

-> could know this from domain knowledge could estimate from praining data

$$f_{k}(x) = P(X = x | Y = k) \stackrel{\text{errows}}{\text{case}} in \text{ disente}$$

$$f_{k}(x) = P(X = x | Y = k) \stackrel{\text{errows}}{\text{true}} in \text{ disente}$$

$$f_{k}(x) = P(X = x) \stackrel{\text{rows}}{\text{true}} in \text{ for a small region around } x \text{ given } Y = k \quad (cts).$$

$$(and it in d) \quad of \quad X \quad for \quad a \quad obsumation \quad that \quad Games \quad from \quad class \quad |c.$$

$$A \quad B \quad P(Y = k | X = x) = \frac{P(Y = k) \quad P(X = x | Y = k)}{T_{k} \quad f_{k}(x)} \quad Bayes \quad theorem \quad Use \quad the \quad seme \quad abbreviation \quad as \quad before \quad abbreviation \quad as \quad before \quad f(X = x) = P(Y = k | X = x) \quad f \quad P(X = x) \quad f \quad F(X = x) \quad F(X = x) \quad F(X = x) \quad f \quad F(X = x) \quad F(X =$$

In general, estimating π_k is easy if we have a random sample of Y's from the population.

Estimating $(f_k(x))$ is more difficult unless we assume some particular forms.

Notation

could

get for domain lano-ledge

Let's (for now) assume we only have 1 predictor. We would like to obtain an estimate for $f_k(x)$ that we can plug into our formula to estimate $p_k(x)$. We will then classify an observation to the class for which $\hat{p}_k(x)$ is greatest.

vation to the class for which $\hat{p}_k(x)$ is greatest. $\underbrace{\tau_k f_k(x)}_{z_k^k, \tau_k f_k(x)}$ Suppose we assume that $f_k(x)$ is normal. In the one-dimensional setting, the normal density takes the form $\underbrace{f_k(x)}_{f_k(x)}$

$$f_{k}(x) = \frac{1}{12\pi\sigma_{n}^{2}} \exp\left(-\frac{1}{2G_{k}}\left(\chi - \mu_{k}\right)^{2}\right)$$

Variance parameter for kth class

Variance parameter for kth class

Let's also (pr now) assume $6_1^2 = ... = 6_K^2 = 6^2$ (share d variance term). Plugging this into our formula to estimate m(n)

Plugging this into our formula to estimate $p_k(x)$,

$$p_{k}(x) = \frac{\prod_{k} \sqrt{12\pi}6^{2}}{\sum_{k=1}^{K} \prod_{q} \frac{1}{\sqrt{2\pi}6^{2}}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}{\sum_{k=1}^{K} \prod_{q} \frac{1}{\sqrt{2\pi}6^{2}}} \exp\left(-\frac{1}{26^{2}} \left(x - M_{k}\right)^{2}\right)}$$

We then assign an observation X = x to the class which makes $p_k(x)$ the largest. This is equivalent to

assign obs. to class which makes

$$\frac{\delta_{k}(x) = x \frac{A_{k}}{6^{2}} - \frac{A_{k}^{2}}{26^{2}} + \log(T_{k}) = \frac{C}{2} \frac{A_{k}}{6^{2}} + \log(T_{k}) = \frac{C}{2} \frac{A_{k}}{6$$

•

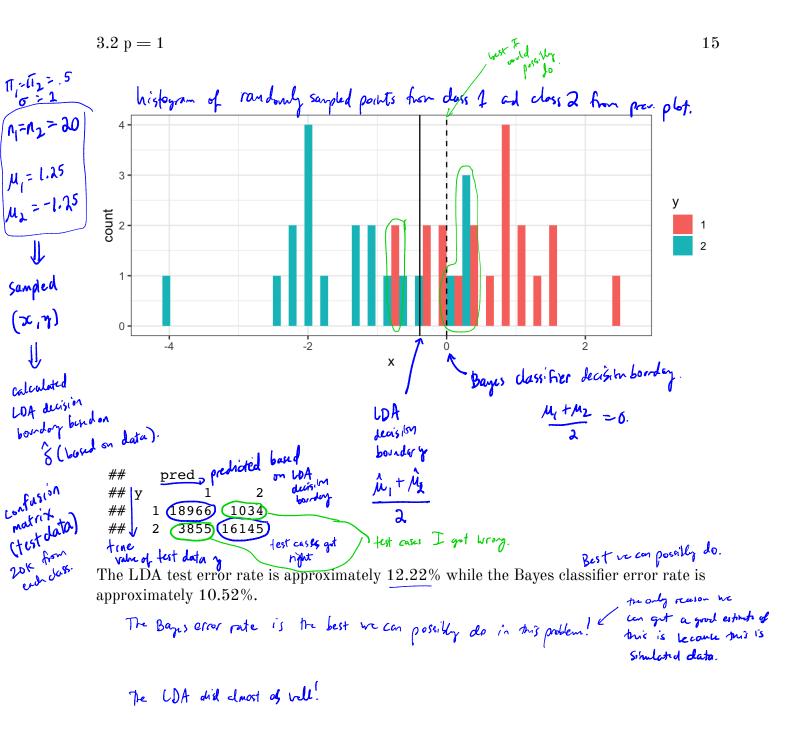
Example 3.1 Let K = 2 and $\pi_1 = \pi_2$. When does the Bayes classifier assign an observation to class 1?

When
$$\delta_1(x) > \delta_2(x)^2$$
.
 $x \frac{\mu_1}{g^x} - \frac{\mu_1^2}{2g^x} + \log(TT_1) > x \frac{\mu_2}{g^2} - \frac{\mu_2^2}{g^x} + \log(TT_2)^T$
 $2 \chi \left(\mu_1 - \mu_2 \right) > \mu_1^2 - \mu_2^2$
 $\chi > \frac{\mu_1 + \mu_2}{g^2} = Bayes decision boundary.$

$$\hat{T}_{\kappa} = \frac{n_{\kappa}}{n}$$

The LDA classifier assignes an observation X = x to the class with the highest value of

$$\hat{S}_{k}(x) = (x)\frac{\hat{\mu}_{k}}{\hat{G}^{2}} - \frac{\hat{\mu}_{k}}{2\hat{G}^{2}} + \log(\hat{\pi}_{k})$$
Juncer in x



The LDA classifier results from assuming that the observations within each class come from a normal distribution with a class-specific mean vector and a common variance σ^2 and plugging estimates for these parameters into the Bayes classifier.

> We will relax trus ussemptions later

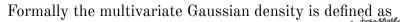
3.3 p > 1

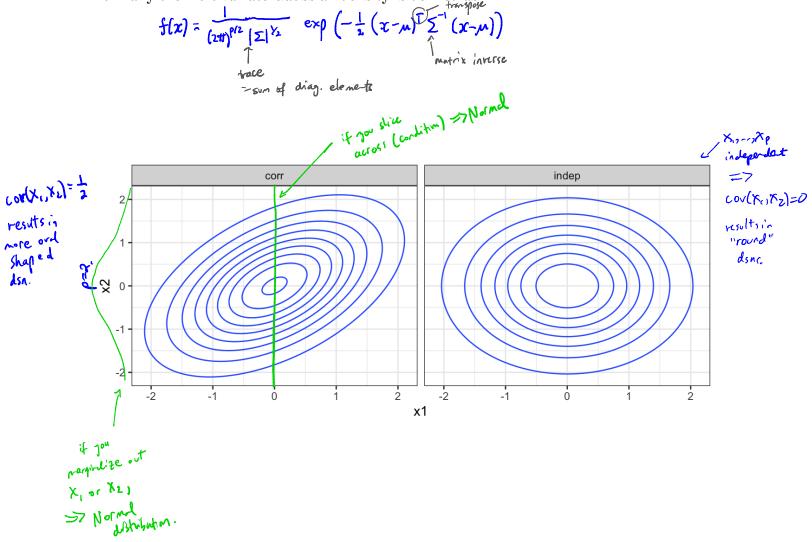
We now extend the LDA classifier to the case of multiple predictors. We will assume

X= (X1,..., Xp) drawn from multivariate Gaussian den N/ class specific mean vector + connon avariance. L> coch individual component follows Normal distribution and

some covariance between components.

 $\sum_{\substack{p \neq 1 \text{ vector} \\ p \neq p \text{ matrix} \\ N_p(\mu, \Sigma) } P \times p \text{ matrix} \\ E \chi = \mathcal{M} \\ Cov(\chi) = \Sigma$





In the case of p > 1 predictors, the LDA classifier assumes the observations in the kth class are drawn from a multivariate Gaussian distribution $N(\mu_k, \Sigma)$.

Plugging in the density function for the kth class, results in a Bayes classifier

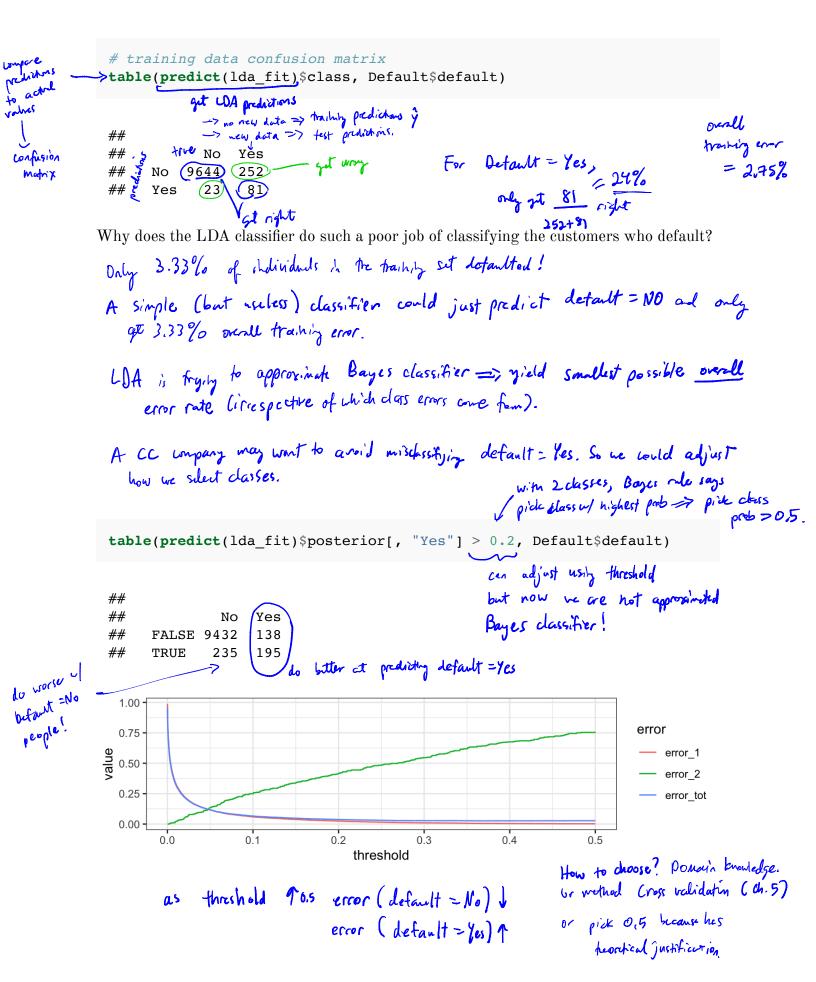
Assign an observation
$$X = x$$
 the class which maximizes
 $S_{k}(x) = x^{T} \Sigma_{MK} - \frac{1}{2} M_{K}^{T} \Sigma_{MK}^{M} + \log T_{K}$
this decision rule is still linear in ∞ .

Once again, we need to estimate the unknown parameters $\mu_1, \ldots, \mu_K, \pi_1, \ldots, \pi_K, \Sigma$.

To classify a new value X = x, LDA plugs in estimates into $\delta_k(x)$ and chooses the class which maximized this value. $\implies \delta_k(x)$ choose the value x = x, the set of the set

Let's perform LDA on the Default data set to predict if an individual will default on Lie_{A} student Lie_{A} and Lie_{A}

```
## Call:
## lda(default ~ student + balance, data = Default)
##
## Prior probabilities of groups:
##
       No
              Yes
                    E estimates of The based on class membership in training data
##
   0.9667 0.0333
##
## Group means:
                                     average of each predictor within each class
       studentYes balance
##
      (0.2914037, 803.9438)
                                          (estimate Mk)
## No
## Yes (0.3813814, 1747.8217) ~ hyper
##
## Coefficients of linear discriminants:
##
                          LD1
                                    T linear combinations of
student and before used to
## studentYes -0.249059498
## balance
                0.002244397
                                         form the LDA devision rule (3).
```



3.4 QDA

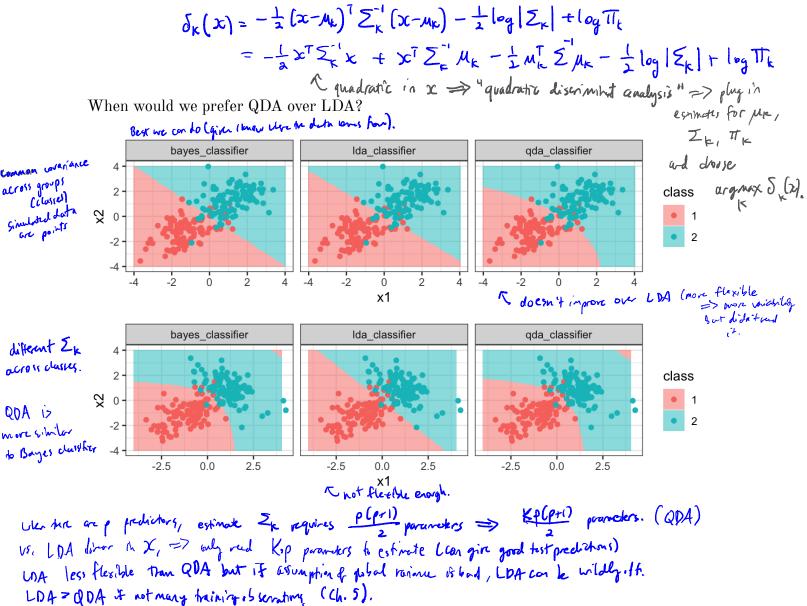
LDA assumes that the observations within each class are drawn from a multivariate Gaussian distribution with a class-specific mean vector and a common covariance matrix across all K classes.

19

Quadratic Discriminant Analysis (QDA) also assumes the observations within each class are drawn from a multivariate Gaussian distribution with a class-specific mean vector but now each class has its own covariance matrix.

on observation from t^{μ} class $X \sim N(\mu_k, \Sigma_k)$

Under this assumption, the Bayes classifier assignes observation X = x to class k for whichever k maximizes



(nonparametric) 4 KNN K-Nearest neighbers Classification.

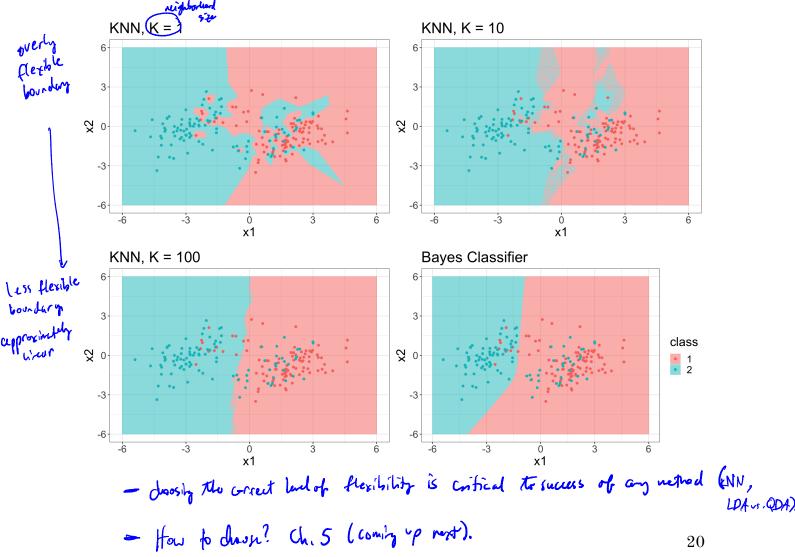
Another method we can use to estimate P(Y = k | X = x) (and thus estimate the Bayes classifier) is through the use of K-nearest neighbors.

< rightorwood size

The KNN classifier first identifies the K points in the training data that are closest to the test data point X = x, called $\mathcal{N}(x) = n c_i c_h c_h c_h c_h$.

Then we estimate P(Y=k | X=x) as $\frac{1}{\mathbb{E}} \sum_{\substack{i \in N(z) \\ v \in j \in k \\ size}} I(q_i = k)^{class k}$ and then classify x to the classifier P(Y=k | X=x).

Just as with regression tasks, the choice of K (neighborhood size) has a drastic effect on the KNN classifier obtained.



Comparison

LDA vs. Logistic Regression
LOA i Logistic Regression are clorely related.
Cosider K=a, p=1, and p(z), p2(z)=1-p(z)
LDA
$$\log\left(\frac{p(a)}{1-p(z)}\right) = \log\left(\frac{\pi}{\pi_2}\exp\left[-\frac{1}{2e^x}\left\{(\alpha-\mu_1)^2-(x-\mu_2)^2\right\}\right)\right) = \log\pi_1 - \log\pi_2 - \frac{1}{2e^x}\left[x^2-2x\mu_1+\mu_1^2-x^2+2\mu_2^2-\mu_2^2\right]$$

LDA $\log\left(\frac{p(a)}{1-p_1}\right) = \log\left(\frac{\pi}{\pi_2}\exp\left[-\frac{1}{2e^x}\left\{(\alpha-\mu_1)^2-(x-\mu_2)^2\right]\right)\right) = \log\pi_1 - \log\pi_2 - \frac{1}{2e^x}\left[x^2-2x\mu_1+\mu_1^2-x^2+2\mu_2^2-\mu_2^2\right]$
Logistic $\log\left(\frac{p_1}{1-p_1}\right) = \beta_0 + \beta_1 z$ where is χ
Regression
Logistic Regression) vs. KNN
KNN is non-parametric, no assumptions made about shape of decision boordary.
 \Rightarrow should outperform LDA is logistic regression then devision boordary.
 \Rightarrow should outperform LDA is logistic regression then devision boordary.
 \Rightarrow should outperform LDA is logistic regression then devision boordary is highly non-like.
KNN does in the line with parameters or important (relationships w/ predictor)
ho intervel.

Not as flexible as KNN => for problems w/ less training dates could have an improvement in prediction over KNN.