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3 LDA
Logistic regression involves direction modeling  using the logistic funcÅ
tion for the case of two response classes. We now consider a less direct approach.

Idea:

Why do we need another method when we have logistic regression?

1. 

2. 

3. 

" linear discriminant analysis "

÷
-

Model the distribution of the predictors X separately in each of the response
classes

(given Y) and then use Bayes theorem to flip these around and get
estimates for

PG --Klux) . TFAIB) =
PCBlA)p

-

PCB) .

* we might have more than 2 response classes.

even
with just

z
class

in the

MP
""

if u is small and the distribution of the predictors is approximately
normal in each class, LDA is more stable than logistic regression .

then classes are
well - separated , the parameter estimates in

logistic regression are suprisigly unstable
.
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�µ� BayesÏ Theorem for Classi{cation

Suppose we wish to classify an observation into one of  classes° where µ

In general° estimating  is easy if we have a random sample of Ïs from the populationµ

Estimating  is more dif{cult unless we assume some particular formsµ

notation - O
✓ categorical Y with k classes ( possible distinct and unordered values).

g.

- overall or
"

prior
" probability that a randomly chosen

aerator falls into the

Kth class,

→ could know this from domain knowledge
could estimate from training data

= P(X -- x / y=p)
← only works in discrete

case

[ probability that X falls into a small region
around x gim Y -k Cots) .

conditional

density function of X for an observation that comes from class K .

A B
PG Mx lytic)

=
Tk frfr) Use the same

- Bayes theorem
abbreviation as before

Eka
,
Te felx) pdx) -- ply -- KIX

-

- x)
-

pPG --x)
" posterior probability

" that an observation
B

X - x comes from The Kth class.

-could
get from

diamonds Computing the fraction of training observations that come from the Kth class
.

←

If we can estimate fktk) we can classifier that is close to

the
"

best
" classifier (more later).
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LetÏs Áfor nowÂ assume we onlw have  predictorµ We would like to obtain an estimate for 
 that we can plug into our formula to estimate µ We will then classifw an obserÅ

vation to the class for which  is greatestµ

Suppose we assume that  is normalµ In the oneÅdimensional setting° the normal denÅ
sitw takes the form

Plugging this into our formula to estimate °

We then assign an observation  to the class which makes  tthe largestµ This is
equivalent to

Example �µ� Let  and µ When does the Bawes classi{er assign an observaÅ
tion to class ¶

" optimal
"

classifier : assuming we know pack) =p(y -- k IX --x)

- assignment to class with the highest posterior probability
Pkcx ) .

- "

Bayes classifier
" and is known to beoptimal in terms of

overall error rate.
i. e . we can do no better than the Bayes classifier

.

A- -

F- -

↳ ITkfklx)
← -

estimating the Bages classifier ! EI , Hefel").

-

Gaussian

tidal -- ftp.expf-ztqcx-uqY)
I mean parameter for Kth class

variance parameter
fer kN class

let's also (for now) assume of = . . .
= q: = o

' ( shared variance term) .

p.dz) =
'KITE exp f- To Go-ing)
-

log ,
Ee! Tetra exp ex -i

traearr
[
not 3.14159 . -

y
-this denotes th priggery!.nl?ftegfseia;Y?

> assign obs
.

to class which makes f Audi!! "

8,64 -- ↳¥ - III. t log Ctia ) is linear in x
-

⇒ " Linear discriminant

largest. analysis "

Td

what x values

will make this

when 8
,
Ix ) > EM ?

happen ?

⇐ x¥ - III. + to# s song - Ey tlog¥
2 " ( u

,
-nd - up -METH

-natural

← Bayes decision boundary.
x >Mtz ⇒yen we will predict class 1.
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In practice° even if we are certain of our assumption that  is drawn from a Gaussian disÅ
tribution within each class° we still have to estimate the parameters 

µ

The linear discriminant analysis ÁLDAÂ method approximated the Bayes classi{er by plugÅ
ging estimates in for µ

Sometimes we have knowledge of class membership probabilities  that can be
used directlyµ If we do not° LDA estimates  using the proportion of training observaÅ
tions that belong to the th classµ

The LDA classi{er assignes an observation  to the class with the highest value of

Payes
classifier
will minimizeovert error

I rate .

predict ← → predict
class 2 class A

Es
of

example where IT,
-
-IT2=0.5

92=-1,25 , Ma
-

- la 25
,
6=1 ⇒ Bayes decision

- - boundary world be
at O

.

In this case we known than N ( Mk , 62) ⇒ we can create this Bay, classifier!

c-shooed variance

Faqs, II.of folly in end class

-

↳ = IT i← average of training observations in classic .

£2 = mtg
"

&
, Fyi,!Ki - dik)

'
← weighted average of class variances

me = # training observations in class K K = # classes
.

y
fam set up of experiment

n = total # training observation . from science
, directly from
knowledge of
- teproblem.

it
.

.

. ÷

I.Go -- ④IT - III. + login )
for
linear in X
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##    pred 
## y       1     2 
##   1 18966  1034 
##   2  3855 16145

The LDA test error rate is approximately 12µ22æ while the Bayes classi{er error rate is
approximately 10µ�2æµ

The LDA classi{er results from assuming that the observations within each class come
from a normal distribution with a classÅspeci{c mean vector and a common variance 
and plugging estimates for these parameters into the Bayes classi{erµ

"

jn÷÷÷÷
hiskrmotrandomgsapudpau-srmqa.it?i!ii:iaamp

... µ,

santa f f
⇐ in

a

¥ / [ Bayes classifier decision borrday .

calculated
↳A decision LDA HTML -

- O.
boundary

band "
decision2^8(based on

data) .

→
predicted band

boundary
on WA fu ,

this
c.
*mi
"

I a-
off!! ath +me %0festcassea.pt# test cases I got wrong . Best we can possibly do .from valve of test data y right
20K
each

dash'
-

the only reason we

can get a good estimate ofThe Baps error rate is the best we can possibly do in this problem !
←
this is because this is

sirnlatrd data
.

The LDA did almost as well !

- - ra
we will

relax this

assumption later
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3.3 p à 1

We now extend the LDA classi{er to the case of multiple predictors. We will assume

Formally the multivariate Gaussian density is de{ned as

X-- (Xi, . . , Xp) drawn from multivariate Gaussian dsn N class specific meagher t common covariance.
↳ each individual component follows Normal distribution and

some covariance btwn components.

P vector pxp matrix
N N (µ ,E) EX -- M

p

Cov (X) -- E

g- transpose
flat - http exp ft (x-NTI

'

Cx-ul)
T l

matrix inverse
trace
-

- sum of diag . elements

cross (
condition)

⇒Normal
X. , - r ,Xp

µ
ifayou

still

← independent
⇒

co Heidi 'T covlxcixzl-0

results in results in

÷:*: f "

rain:
"

i
if you

marginalize
out

X , or
X2 I

⇒ Normaldistribution .
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In the case of  predictors° the LDA classi{er assumes the observations in the th
class are drawn from a multivariate Gaussian distribution µ

Plugging in the densitw function for the th class° results in a Bawes classi{er

Once again° we need to estimate the unknown parameters µ

To classifw a new value ° LDA plugs in estimates into  and chooses the class
which mavimized this valueµ

LetÏs perform LDA on the DHIDXOW data set to predict if an individual will default on
their CC pawment based on balance and student statusµ

## CDOO: 
## OGD(GHIDXOW a VWXGHQW + EDODQFH, GDWD = DHIDXOW) 
##  
## 3ULRU SUREDELOLWLHV RI JURXSV: 
##     1R    <HV  
## 0.9667 0.0333  
##  
## GURXS PHDQV: 
##     VWXGHQW<HV   EDODQFH 
## 1R   0.2914037  803.9438 
## <HV  0.3813814 1747.8217 
##  
## CRHIILFLHQWV RI OLQHDU GLVFULPLQDQWV: 
##                     LD1 
## VWXGHQW<HV -0.249059498 
## EDODQFH     0.002244397

libUaU\(MA66) # package conWaining lda fXncWion
OGDBILW <- lda(GHIDXOW a VWXGHQW + EDODQFH, GDWD = DHIDXOW)
OGDBILW

Acommon covariance .

+class specific mean

Assign an observation X-- x the class which maximizes

8,170) = sat I'µk - Imi Ema t logttk
- in

this decision rule is still linear in X .

LDA

-

use similar formulas to estimate as in p
-

- l case.

⇒ 8
, la) choose K which maximizes

lie
. estimating

the Bages classifier).
- - p

-

-2.

-2 X, Xz

in
- -Y specify formula just like with Im and glm

±
← estimates of It based on

class membership in training data n

✓Ano average of each predictor within each class

$ a B
e ( estimate Mk)

& a
B -Moyes

T
linear combinations of
student and balance used to

form the LDA decision rule ( f ) .
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##       
##         1R  <HV 
##   1R  9644  252 
##   <HV   23   81

Whw d`el nhe LDA clalli{ek d` loch a h``k j`b `f clallifwi^g nhe coln`]ekl uh` defaoln¶

##         
##           1R  <HV 
##   FAL6E 9432  138 
##   758E   235  195

# Wraining daWa confXVion maWri[
Wable(pUedicW(OGDBILW)$FODVV, DHIDXOW$GHIDXOW)

Wable(pUedicW(OGDBILW)$SRVWHULRU>, "<HV"@ > 0.2, DHIDXOW$GHIDXOW)

compare
predictions →
to
actual #

get LDA predictionsvalves
→ no new data ⇒ training predictions ya

\ → new data ⇒ test predictions ,
overall

✓

true & trashing errorconfusion
matrix

'

good ②§
- got war For Default -- Yess

, zy%
= -2.75%

e
-

•

get right
only get 81 right

252+81

Only 3.33% of individuals in the train,y set defaulted !

A simple (but useless) classifier could just predict default = NO ad only
get 3.33% overall training error .

LIA is frying to approximate Bayes classifier⇒ yield smallest possible overall
error rate (irrespective of which class errors come fam) .

A Cc company may want
to aroid misclassify iz default -- Yes . So we could adjust

how we select classes .

y
with 2classes, Bages rule says

pick dclass w/ highest pub⇒ pick class
prob 705.

-

can adjust using threshold
but now we are not approximated

again:!
-

O
. www.u.am?7:dassirnr

!

people
!

How to choose? Domain knowledge.
as threshold has error ( default = No ) f or method cross validation ( oh - S7

error ( default -- yes) q or pick 0,5 because has

hearted justification
.
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LDA assumes that the observations within each class are drawn from a multivariate
Gaussian distribution with a classÅspeci{c mean vector and a common covariance matrix
across all  classesµ

Quadratic Discriminant Analysis ÁQDAÂ also assumes the observations within each class
are drawn from a multivariate Gaussian distribution with a classÅspeci{c mean vector but
now each class has its own covariance matrixµ

Under this assumption° the Bayes classi{er assignes observation  to class  for
whichever  maximizes

When would we prefer QDA over LDA¶

-

-

-

an observation from k" class

X n N (Mia , Ek)

- p

dis (x) = - I Go
-Ma)

"

Ek (x-ma) - I log 124 + logTk
=
- taxsix + si EI

'

Mk - Int Ine - flag I Get t legTk
k quadratic in x ⇒ " quadratic discriminant analysis "⇒ plugin

estimates forme ,
Best we can do (given I knew where he doth 6ms fun) .

Ik ,
IT
k

and choose
Ccoommmmoonn

covariance

across group ' arggngx 8,124.Chasse's)

simulated
data

arc points

T doesn't improve over LDA
(more flexible
⇒ more variability
but didn'tand
it .

different Ek
across clashes .

QAA is

more whiter

to Bayes classifier

T not flexible enough.

her tire are p predictors, estimate Ek requires PlP' parameters ⇒ KYI parameters . (QDA)

vs. IMA iliror 1h X
,
⇒ only need Kop parameters to estimate lcan give good testpredators)

una less flexible than QDA but if assumption of global variance is bad , LDA can be wildly off.
LDA > QDA if notmany training observations. C Cho S ) .
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� KNN
Another method we can use to estimate  Áand thus estimate the Bayes
classi{erÂ is through the use of Ånearest neighborsµ

The KNN classi{er {rst identi{es the  points in the training data that are closest to the
test data point ° called µ

Just as with regression tasks° the choice of  Áneighborhood sizeÂ has a drastic effect on
the KNN classi{er obtainedµ

Chonparametric
)

K - Nearest neighbors
classification .

-

class
K

t

← Highbornood size

← neighborhood. -

← class K

Ther we estimate PG --K IX --x) as

⑤ Em.#Gi
"" "

neighborhood
size

and then classify x to the class'S w/ highest T (y '- KIX -- x ) .

overly
quiet

flexible
boundary

\
less flexible
boundary

approximately
wear

- choosing the correct lad of flexibility is critical to success of any method INN
,

LDA us .QDA).

- How to choose? Ch
. 5 ( coming up next) .
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� C`mhakil`n
LDA tlµÑL`gilnic Regkelli`n

ÁLDA ê L`gilnic Regkelli`nÂ tlµÑKNN

QDA

LDA T logistic Regression are closely related.
Consider K¥9 , p -- I , and pi la)

, pzcxl -- I - pi Cx)

LDA log ftp.f-loglp:9?T7=logftIexpfIe4x-mT-lx-naTD--Iogr. - lost. - ITG'-2M¥.nu?-7ngy
= Co t Cpk linear in X

TT plugin estimates
logistic log (Ipt) = pot pix ← linear ink based on in , 'm , no, it, it.
Regression tffwimgMLE@musnshtableLogisticregrss.h.does net⇒ whichever

should get similar results , but LDA assumes Gaussian distribution and assumption
holds should

KNN is nonparametric , no assumptions made abut shape of decision boundary .
" hitter

-

⇒ should outperform LDA I Logistic regression then decision, boundary is highly non -Gear.

KNN doesn't tell us which parameters are important ( relationships w/ predictor)
no inference .

Compromise between K NN E linear (LDA } Logistic regression) .

Quadratic decision boundary ⇒ can accurately model a wider range of problems .

Not as flexible as KNN ⇒ for problems w/ less training
data could have an improvement

in prediction over KNN .


