
Chapter 4: ClassificationChapter 4: Classification
The linear model in Ch. 3 assumes the response variable  is quantitiative. But in many
situations, the response is categorical.

In this chapter we will look at approaches for predicting categorical responses, a process
known as classification.

Classification problems occur often, perhaps even more so than regression problems. Some
examples include

1. 

2. 

3. 

As with regression, in the classification setting we have a set of training observations 
 that we can use to build a classifier. We want our classifier to perform

well on the training data and also on data not used to fit the model (test datatest data).

We will use the Default data set in the ISLR package for illustrative purposes. We are
interested in predicting whether a person will default on their credit card payment on the
basis of annual income and credit card balance.
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##   default student   balance    income
## 1      No      No  729.5265 44361.625
## 2      No     Yes  817.1804 12106.135
## 3      No      No 1073.5492 31767.139
## 4      No      No  529.2506 35704.494
## 5      No      No  785.6559 38463.496
## 6      No     Yes  919.5885  7491.559
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11 Why not Linear Regression? Why not Linear Regression?
I have said that linear regression is not appropriate in the case of a categorical response.
Why not?

Let’s try it anyways. We could consider encoding the values of default in a quantitative
repsonse variable 

Using this coding, we could then fit a linear regression model to predict  on the basis of
income and balance. This implies an ordering on the outcome, not defaulting comes first
before defaulting and insists the difference between these two outcomes is  unit. In
practice, there is no reason for this to be true.

Using the dummy encoding, we can get a rough estimate of , but it is not
guaranteed to be scaled correctly.
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0 otherwise
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22 Logistic Regression Logistic Regression
Let’s consider again the default variable which takes values Yes or No. Rather than
modeling the response directly, logistic regression models the probability that  belongs to
a particular category.

For any given value of balance, a prediction can be made for default.

2.12.1 The Model The Model

How should we model the relationship between  and ? We could use
a linear regression model to represent those probabilities
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To avoid this, we must model  using a function that gives outputs between  and  for
all values of . Many functions meet this description, but in logistic regression, we use the
logistic function,

After a bit of manipulation,
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By taking the logarithm of both sides we see,

Recall from Ch. 3 that  gives the “average change in  associated with a one unit
increase in .” In contrast, in a logistic model,

However, because the relationship between  and  is not linear,  does notnot
correspond to the change in  associated with a one unit increase in . The amount
that  changes due to a 1 unit increase in  depends on the current value of .
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2.2.22 Estimating the Coefficients Estimating the Coefficients

The coefficients  and  are unknown and must be estimated based on the available
training data. To find estimates, we will use the method of maximum likelihood.

The basic intuition is that we seek estimates for  and  such that the predicted
probability  of default for each individual corresponds as closely as possible to the
individual’s observed default status.

## 
## Call:
## stats::glm(formula = default ~ balance, family = stats::binomial, 
##     data = data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2697  -0.1465  -0.0589  -0.0221   3.7589  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.065e+01  3.612e-01  -29.49   <2e-16 ***
## balance      5.499e-03  2.204e-04   24.95   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1596.5  on 9998  degrees of freedom
## AIC: 1600.5
## 
## Number of Fisher Scoring iterations: 8

β0 β1

β0 β1
p̂(xi)

logistic_spec <- logistic_reg()

logistic_fit <- logistic_spec |>
  fit(default ~ balance, family = "binomial", data = Default)

logistic_fit |>
  pluck("fit") |>
  summary()
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2.2.33 Predictions Predictions

Once the coefficients have been estimated, it is a simple matter to compute the probability
of default for any given credit card balance. For example, we predict that the default
probability for an individual with balance of $1,000 is

In contrast, the predicted probability of default for an individual with a balance of $2,000
is

-
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2.2.44 Multiple Logistic Regression Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By
analogy with the extension from simple to multiple linear regression,

Just as before, we can use maximum likelihood to estimate .

## 
## Call:
## stats::glm(formula = default ~ ., family = stats::binomial, data = 
data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4691  -0.1418  -0.0557  -0.0203   3.7383  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.087e+01  4.923e-01 -22.080  < 2e-16 ***
## studentYes  -6.468e-01  2.363e-01  -2.738  0.00619 ** 
## balance      5.737e-03  2.319e-04  24.738  < 2e-16 ***
## income       3.033e-06  8.203e-06   0.370  0.71152    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1571.5  on 9996  degrees of freedom
## AIC: 1579.5
## 
## Number of Fisher Scoring iterations: 8

β0, β1, … , βp

logistic_fit2 <- logistic_spec |>
  fit(default ~ ., family = "binomial", data = Default)

logistic_fit2 |>
  pluck("fit") |>
  summary()
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By substituting estimates for the regression coefficients from the model summary, we can
make predictions. For example, a student with a credit card balance of $1,500 and an
income of $40,000 has an estimated probability of default of

A non-student with the same balance and income has an estimated probability of default of

2.2.55 Logistic Regression for  Logistic Regression for  Classes Classes

We sometimes which to classify a response variable that has more than two classes. There
are multi-class extensions to logistic regression (“multinomial regression”), but there are
far more popular methods of performing this.
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33 LDA LDA
Logistic regression involves direction modeling  using the logistic function
for the case of two response classes. We now consider a less direct approach.

Idea:Idea:

Why do we need another method when we have logistic regression?

1. 

2. 

3. 

P(Y = k|X = x)

"linear discriminant analysis"

A
-

Model the distribution of the predictors X separately in each of the response
classes (given 4) .

and then use Bayes theorem to flip these and But P(Y=x)X=3)
.

=

P(A(B) = (A)

classes wellseparated parameter estimates of
predictors are surprisinglyunstable

n is small t XÉNormal LDA more

stable

iture have 72 responseclasses
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3.3.11 Bayes’ Theorem for Classification Bayes’ Theorem for Classification

Suppose we wish to classify an observation into one of  classes, where .

In general, estimating  is easy if we have a random sample of ’s from the population.

Estimating  is more difficult unless we assume some particular forms.

K K ≥ 2

πk

fk(x)

P(Y = k|X = x)

πk Y

fk(x)

Y response k distinct

prior overallprobability that an observation is

in class K

KPIX
x1 Y K discrete

Plxsimsmeneral Y K continuous
densityof
X in class K

i EÉ
postphigability

PF Tan tÉIÉÉÉhions

if we can estimate fucx we candevelop
a classifier close to the BEST classifier
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3.3.22 p = 1 p = 1

Let’s (for now) assume we only have  predictor. We would like to obtain an estimate for 
 that we can plug into our formula to estimate . We will then classify an

observation to the class for which  is greatest.

Suppose we assume that  is normal. In the one-dimensional setting, the normal
density takes the form

Plugging this into our formula to estimate ,

We then assign an observation  to the class which makes  tthe largest. This is
equivalent to

Example 3.1 Example 3.1 Let  and . When does the Bayes classifier assign an
observation to class ?

1
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In practice, even if we are certain of our assumption that  is drawn from a Gaussian
distribution within each class, we still have to estimate the parameters 

.

The linear discriminant analysis (LDA) method approximated the Bayes classifier by
plugging estimates in for .

Sometimes we have knowledge of class membership probabilities  that can be
used directly. If we do not, LDA estimates  using the proportion of training
observations that belong to the th class.

The LDA classifier assignes an observation  to the class with the highest value of

X
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##    pred
## y       1     2
##   1 18966  1034
##   2  3855 16145

The LDA test error rate is approximately 12.22% while the Bayes classifier error rate is
approximately 10.52%.

The LDA classifier results from assuming that the observations within each class come
from a normal distribution with a class-specific mean vector and a common variance 
and plugging estimates for these parameters into the Bayes classifier.
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3.3.33 p > 1 p > 1

We now extend the LDA classifier to the case of multiple predictors. We will assume

Formally the multivariate Gaussian density is defined as

1 X Xp MUN A E

ft 12hr11 l z exp I E 1 E Iz e
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2
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In the case of  predictors, the LDA classifier assumes the observations in the th
class are drawn from a multivariate Gaussian distribution .

Plugging in the density function for the th class, results in a Bayes classifier

Once again, we need to estimate the unknown parameters .

To classify a new value , LDA plugs in estimates into  and chooses the class
which maximized this value.

Let’s perform LDA on the Default data set to predict if an individual will default on their
CC payment based on balance and student status.

## Call:
## lda(default ~ student + balance, data = data)
## 
## Prior probabilities of groups:
##     No    Yes 
## 0.9667 0.0333 
## 
## Group means:
##     studentYes   balance
## No   0.2914037  803.9438
## Yes  0.3813814 1747.8217
## 
## Coefficients of linear discriminants:
##                     LD1
## studentYes -0.249059498
## balance     0.002244397

p > 1 k

N(µk, Σ)

k

µ1, … , µK, π1, … , πK, Σ

X = x δk(x)

lda_spec <- discrim_linear(engine = "MASS")

lda_fit <- lda_spec |>
  fit(default ~ student + balance, data = Default)

lda_fit |>
  pluck("fit")

Su x It E ta IMIETuntlogT

Fux E É In I MET Get login

I
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##           Truth
## Prediction   No  Yes
##        No  9644  252
##        Yes   23   81

Why does the LDA classifier do such a poor job of classifying the customers who default?

##           Truth
## Prediction   No  Yes
##        No  9432  138
##        Yes  235  195

# training data confusion matrix
lda_fit |>
  augment(new_data = Default) |>
  conf_mat(truth = default, estimate = .pred_class)

lda_fit |>
  augment(new_data = Default) |>
  mutate(pred_lower_cutoff = factor(ifelse(.pred_Yes > 0.2, "Yes", 

"No"))) |>
  conf_mat(truth = default, estimate = pred_lower_cutoff)
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3.3.44 QDA QDA

LDA assumes that the observations within each class are drawn from a multivariate
Gaussian distribution with a class-specific mean vector and a common covariance matrix
across all  classes.

Quadratic Discriminant Analysis (QDA) also assumes the observations within each class
are drawn from a multivariate Gaussian distribution with a class-specific mean vector but
now each class has its own covariance matrix.

Under this assumption, the Bayes classifier assigns observation  to class  for
whichever  maximizes

When would we prefer QDA over LDA?

K

X = x k

k
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44 KNN KNN
Another method we can use to estimate  (and thus estimate the Bayes
classifier) is through the use of -nearest neighbors.

The KNN classifier first identifies the  points in the training data that are closest to the
test data point , called .

Just as with regression tasks, the choice of  (neighborhood size) has a drastic effect on
the KNN classifier obtained.

P(Y = k|X = x)
K

K

X = x N (x)

K
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55 Comparison Comparison
LDA vs. Logistic Regression

(LDA & Logistic Regression) vs. KNN

QDA


