Chapter 4: Classification

The linear model in Ch. 3 assumes the response variable Y is quantitiative. But in many
situations, the response is_categorical.
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In this chapter we will look at approaches for predicting categorical responses, a process
known as classification.
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Classification problems occur often, perhaps even more so than regression problems. Some
examples include
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As with regression, in the classification setting we have a set of training observations

b (21,41), - - -, (€n,yn) that we can use to'build a classifier. We want our classifier to perform
o well on the training data and also on data not used to fit the model (test data).
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We will use the Default data set in the ISLR package for illustrative purposes. We are
interested in predicting whether a person will default on their credit card payment on the
basis of annual income and credit card balance:
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## default student balance income
## 1 No No 729.5265 44361.625
## 2 No Yes 817.1804 12106.135
## 3 No No 1073.5492 31767.139
## 4 No No 529.2506 35704.494
## 5 No No 785.6559 38463.496
## 6 No Yes 919.5885 7491.559 ”
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1 Why not Linear Regression?

I have said that linear regression is not appropriate in the case of a categorical response.
Why not?

Let’s try it anyways. We could consider encoding the values of default in a quantitative
repsonse variable Y

v — 1 ifdefault
" 10 otherwise

Using this coding, we could then fit a linear regression model to predict Y on the basis of
income and balance, This implies an“ordering on the outcome, not defaulting comes first
before defaulting anc@nsists the difference between these two outcomes is 1 unit. In
practice, there is no reason for this to be true.
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Using the dl/lmmy encoding, we can get a/rough)estimate of P(default|X), but it is not
guaranteed to be scaled correctly.
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2 Logistic Regression

Let’s consider again the default variable which takes values Yes or No. Rather than

modeling the response directly, logistic regression models the probability that Y belongs to
a particular category.
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For any given value of balance, a prediction can be made for default.
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2.1 The Model

How should we model the relationship between p(X) = P(Y = 1|X) and X? We could use
a linear regression model to represent those probabilities

PIx)=pot X
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To avoid this, we must model p(X) using a function that gives outputs between 0 and 1 for

all values of X. Many functions meet this description, but in logistic regression, we use the
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logistic function,
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After a bit of manipulation,



6 2 Logistic Regression

By taking the logarithm of both sides we see,

Recall from Ch. 3 that 8; gives the “average change in Y associated with a one unit
increase in X.” In contrast, in a logistic model,

However, because the relationship between p(X) and X is not linear, 8; does not
correspond to the change in p(X) associated with a one unit increase in X. The amount
that p(X) changes due to a 1 unit increase in X depends on the current value of X.



2.2 Estimating the Coefficients

2.2 Estimating the Coefficients

The coefficients By and 81 are unknown and must be estimated based on the available
training data. To find estimates, we will use the method of maximum likelihood.

The basic intuition is that we seek estimates for By and 8; such that the predicted
probability p(z;) of default for each individual corresponds as closely as possible to the
individual’s observed default status.

logistic_spec <- logistic_reg()

logistic fit <- logistic_spec |>
fit(default ~ balance, "binomial", Default)

logistic fit |>
pluck("£fit") |>
summary ()

##

## Call:

## stats::glm(formula = default ~ balance, family = stats::binomial,
## data = data)

##

## Deviance Residuals:

## Min 10 Median 30 Max

## -2.2697 -0.1465 -0.0589 -0.0221 3.7589

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 **%*

## balance 5.499e-03 2.204e-04 24.95 <2e-16 **x*

## ——=

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ''1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1596.5 on 9998 degrees of freedom
## AIC: 1600.5

##

## Number of Fisher Scoring iterations: 8



8 2 Logistic Regression

2.3 Predictions

Once the coefficients have been estimated, it is a simple matter to compute the probability
of default for any given credit card balance. For example, we predict that the default
probability for an individual with balance of $1,000 is

In contrast, the predicted probability of default for an individual with a balance of $2,000
is



2.4 Multiple Logistic Regression 9

2.4 Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By
analogy with the extension from simple to multiple linear regression,

Just as before, we can use maximum likelihood to estimate By, 81, ..., Bp.

logistic fit2 <- logistic_spec |>
fit(default ~ ., "binomial", Default)

logistic fit2 |>
pluck("£fit") |>
summary ()

##

## Call:

## stats::glm(formula = default ~ ., family = stats::binomial, data =
data)

##

## Deviance Residuals:

## Min 10 Median 30 Max

## -2.4691 -0.1418 -0.0557 -0.0203 3.7383

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***

## studentYes -6.468e-01 2.363e-01 -2.738 0.00619 **

## balance 5.737e-03 2.319e-04 24.738 < 2e-16 *x*

## income 3.033e-06 8.203e-06 0.370 0.71152

## ——=

## Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1571.5 on 9996 degrees of freedom
## AIC: 1579.5

##

## Number of Fisher Scoring iterations: 8



10 2 Logistic Regression

By substituting estimates for the regression coefficients from the model summary, we can
make predictions. For example, a student with a credit card balance of $1,500 and an
income of $40,000 has an estimated probability of default of

A non-student with the same balance and income has an estimated probability of default of

2.9 Logistic Regression for > 2 Classes

We sometimes which to classify a response variable that has more than two classes. There
are multi-class extensions to logistic regression (“multinomial regression”), but there are
far more popular methods of performing this.



3 LDA

Logistic regression involves direction modeling P(Y = k|X = z) using the logistic function
for the case of two response classes. We now consider a less direct approach.

Idea:

Why do we need another method when we have logistic regression?

11



12 3 LDA

3.1 Bayes’ Theorem for Classification

Suppose we wish to classify an observation into one of K classes, where K > 2.

T

fr(z)

P(Y = kX = z)

In general, estimating 7, is easy if we have a random sample of Y’s from the population.

Estimating fi(z) is more difficult unless we assume some particular forms.
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32p=1

Let’s (for now) assume we only have 1 predictor. We would like to obtain an estimate for
fr(x) that we can plug into our formula to estimate py(z). We will then classify an
observation to the class for which p,(z) is greatest.

Suppose we assume that fi(z) is normal. In the one-dimensional setting, the normal
density takes the form

Plugging this into our formula to estimate pg(z),

We then assign an observation X = z to the class which makes p(z) tthe largest. This is
equivalent to

Example 3.1 Let K = 2 and m; = my. When does the Bayes classifier assign an
observation to class 1?



14 3 LDA
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In practice, even if we are certain of our assumption that X is drawn from a Gaussian

distribution within each class, we still have to estimate the parameters

2
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The linear discriminant analysis (LDA) method approximated the Bayes classifier by
plugging estimates in for 7y, uz, 0.

Sometimes we have knowledge of class membership probabilities 7y, ..., mx that can be
used directly. If we do not, LDA estimates 7 using the proportion of training
observations that belong to the kth class.

The LDA classifier assignes an observation X = x to the class with the highest value of
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## pred
## y 1 2

## 1 18966 1034
## 2 3855 16145

The LDA test error rate is approximately 12.22% while the Bayes classifier error rate is
approximately 10.52%.

The LDA classifier results from assuming that the observations within each class come
from a normal distribution with a class-specific mean vector and a common variance o2
and plugging estimates for these parameters into the Bayes classifier.
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3 LDA

We now extend the LDA classifier to the case of multiple predictors. We will assume

Formally the multivariate Gaussian density is defined as

corr indep
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In the case of p > 1 predictors, the LDA classifier assumes the observations in the kth
class are drawn from a multivariate Gaussian distribution N (g, X).

Plugging in the density function for the kth class, results in a Bayes classifier

Once again, we need to estimate the unknown parameters w1, ..., Hg, 71, ..., 7K, 2.

To classify a new value X = z, LDA plugs in estimates into §;(x) and chooses the class
which maximized this value.

Let’s perform LDA on the Default data set to predict if an individual will default on their
CC payment based on balance and student status.

lda spec <- discrim linear( "MASS")

lda_fit <- 1lda_spec |>
fit(default ~ student + balance, Default)

lda fit |>
pluck("fit")

## Call:

## lda(default ~ student + balance, data = data)
##

## Prior probabilities of groups:

## No Yes

## 0.9667 0.0333

##

## Group means:

## studentYes balance

## No 0.2914037 803.9438
## Yes 0.3813814 1747.8217

##
## Coefficients of linear discriminants:
## LD1

## studentYes -0.249059498
## balance 0.002244397



18 3 LDA

lda_fit |>
augment ( Default) |>
conf mat( default, .pred class)
## Truth
## Prediction No Yes
## No 9644 252
## Yes 23 81

Why does the LDA classifier do such a poor job of classifying the customers who default?

lda_fit |>
augment ( Default) |>
mutate ( factor(ifelse(.pred Yes > , "Yes",
"No"))) |>
conf mat( default, pred lower cutoff)
## Truth
## Prediction No Yes
## No 9432 138
## Yes 235 195
1.00 4
0754 error
) — error_1
= 0501 -
> — error_2
0.254 —— error_tot
0001 — — . : :
0.0 0.1 0.2 0.3 0.4 0.5

threshold



3.4 QDA 19

3.4 QDA

LDA assumes that the observations within each class are drawn from a multivariate
Gaussian distribution with a class-specific mean vector and a common covariance matrix
across all K classes.

Quadratic Discriminant Analysis (QDA) also assumes the observations within each class
are drawn from a multivariate Gaussian distribution with a class-specific mean vector but
now each class has its own covariance matrix.

Under this assumption, the Bayes classifier assigns observation X = z to class k for
whichever k maximizes

When would we prefer QDA over LDA?

bayes_classifier Ida_classifier qda_classifier

-4 4




20 4 KNN

4 KNN

Another method we can use to estimate P(Y = k|X = z) (and thus estimate the Bayes
classifier) is through the use of K-nearest neighbors.

The KNN classifier first identifies the K points in the training data that are closest to the
test data point X = z, called N'(z).

Just as with regression tasks, the choice of K (neighborhood size) has a drastic effect on
the KNN classifier obtained.
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5 Comparison

LDA vs. Logistic Regression

(LDA & Logistic Regression) vs. KNN

QDA
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