
Chapter 4: ClassificationChapter 4: Classification
The linear model in Ch. 3 assumes the response variable  is quantitiative. But in many
situations, the response is categorical.

In this chapter we will look at approaches for predicting categorical responses, a process
known as classification.

Classification problems occur often, perhaps even more so than regression problems. Some
examples include

1. 

2. 

3. 

As with regression, in the classification setting we have a set of training observations 
 that we can use to build a classifier. We want our classifier to perform

well on the training data and also on data not used to fit the model (test datatest data).

We will use the Default data set in the ISLR package for illustrative purposes. We are
interested in predicting whether a person will default on their credit card payment on the
basis of annual income and credit card balance.

Y

(x1, y1), … , (xn, yn)

-

-

e.g . eye color

cancer diagnosis
which movie I will watch next

-

A person arrives at emergency room with a set of symptoms that could be attributed to one

of three medial conditions
,

which of the three conditions does the person have?

An online banking service must be able to determine whether a transaction is fraudulent on the

basis of user's IP address
, past transaction history ,

etc.

Something is in the street in front of the self-drivingcr you are riding in . Is it

a human or another car ?

Il 11

"It,
-

most importantly.

-

↓
Yes or no=> categorical .



##   default student   balance    income
## 1      No      No  729.5265 44361.625
## 2      No     Yes  817.1804 12106.135
## 3      No      No 1073.5492 31767.139
## 4      No      No  529.2506 35704.494
## 5      No      No  785.6559 38463.496
## 6      No     Yes  919.5885  7491.559

head (Default)
features

Y -

based
decentratione balac

a

pronounced relationsin's between balance and default

in a
lot of cases

,
relationship is not no pronounced > dassification will be hander.
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11 Why not Linear Regression? Why not Linear Regression?
I have said that linear regression is not appropriate in the case of a categorical response.
Why not?

Let’s try it anyways. We could consider encoding the values of default in a quantitative
repsonse variable 

Using this coding, we could then fit a linear regression model to predict  on the basis of
income and balance. This implies an ordering on the outcome, not defaulting comes first
before defaulting and insists the difference between these two outcomes is  unit. In
practice, there is no reason for this to be true.

Using the dummy encoding, we can get a rough estimate of , but it is not
guaranteed to be scaled correctly.

Y

Y = { 1 if default
0 otherwise

Y

1

P(default|X)

①
②

we could let Y = 20 ifdefaula

OR Y : S itdefault
there is no

natural reason a
O/ encoding, but it has an advantage :

a
O-

↓
doesn't have to be between O and 1

but will provide an ordering.

Real problem : this commet be easily extended to more than 2 classes .

We can instead use methods specifically formulated for categorial responses.



4

22 Logistic Regression Logistic Regression
Let’s consider again the default variable which takes values Yes or No. Rather than
modeling the response directly, logistic regression models the probability that  belongs to
a particular category.

For any given value of balance, a prediction can be made for default.

2.12.1 The Model The Model

How should we model the relationship between  and ? We could use
a linear regression model to represent those probabilities

Y

p(X) = P(Y = 1|X) X

-

-

e. g. P(default
= Yes (balance

we can abbreviate this as p(balance) + [0, 17.

engo predict default = Yes if p(balance) > 0 . 5

or the company could be more conservative predict default= Yes if p(balance)
threshold.

p(X) = Bo + p, X

& Ifbehad a large
>

balance would have

problem :

close to predicted prob . 3 I

for balances

Zero we predict negative
~

& of defaulting

probability of default- /
reiter of these

make any
sense .
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To avoid this, we must model  using a function that gives outputs between  and  for
all values of . Many functions meet this description, but in logistic regression, we use the
logistic function,

After a bit of manipulation,

p(X) 0 1
X

standard logistic function

e
*

f(x2) :The

-

-

Bo + B, X

p(X)=
It ePotBX

will never

be

we will use maximum likelihood to estimate B's (later). ↓ above 1

↑ S-shaped

low balance

predict probabilities
will dea get

a sensible prediction.but
close to zeo,

below .

never

#1 - p(x)
lol high

prob of default.

w ↑ ↑L

"odds" -> can take any
value between 0 and o

eg . p(x) = 0.
2 => odds= "One in

S people default"
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By taking the logarithm of both sides we see,

Recall from Ch. 3 that  gives the “average change in  associated with a one unit
increase in .” In contrast, in a logistic model,

However, because the relationship between  and  is not linear,  does notnot
correspond to the change in  associated with a one unit increase in . The amount
that  changes due to a 1 unit increase in  depends on the current value of .

β1 Y

X

p(X) X β1
p(X) X

p(X) X X

log(x) = Bo + B ,
X

in
- legit is linear in X

"log-odds"
"log it"

increasing X by one unit corresponds to changing the log-odds by B,
#)

increasing X by one unit corresponds to multiplying the odds by
Br

Regardless of the value of X,

if B1 is positive => increasing X increases p(X)
if B , is negative => increasing X deceses p(x) .



2.2 Estimating the Coefficients 7

2.2.22 Estimating the Coefficients Estimating the Coefficients

The coefficients  and  are unknown and must be estimated based on the available
training data. To find estimates, we will use the method of maximum likelihood.

The basic intuition is that we seek estimates for  and  such that the predicted
probability  of default for each individual corresponds as closely as possible to the
individual’s observed default status.

## 
## Call:
## stats::glm(formula = default ~ balance, family = stats::binomial, 
##     data = data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2697  -0.1465  -0.0589  -0.0221   3.7589  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.065e+01  3.612e-01  -29.49   <2e-16 ***
## balance      5.499e-03  2.204e-04   24.95   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1596.5  on 9998  degrees of freedom
## AIC: 1600.5
## 
## Number of Fisher Scoring iterations: 8

β0 β1

β0 β1
p̂(xi)

logistic_spec <- logistic_reg()

logistic_fit <- logistic_spec |>
  fit(default ~ balance, family = "binomial", data = Default)

logistic_fit |>
  pluck("fit") |>
  summary()

-

in fact ,

least
gives as

squares answer to do this
,

use the likelihood function l(Bo , Br) = p(xi) it (1-plain)
the

same in yi
= 1 in :Yip

=0

E
w / our Bo and B,

chosen to maximize &(BocBr)
ML from

assumptions
- model specification

before-

Youx meen

Y takes values in &0 , 13. training data

for
i = N

implies Bo

- e

test ~ p(x) =

eBoHypothesis Ho : Bi = 0

~ accuraenctes
Ha : Bito => doesn't depend

for i = 0
, 1 on X

Bo - W => fore is no signifant
Bi ~ relationship.

-
p <. OS =>

rejectHo >

there is a significat
relationshipbtul
balance default.

& = 0
.

0055 => increase in balance is associated of an increase in prob of default.

A $1 increase in balance is associated / an expected in sease in log-odds of default by 0. 0055 units.

0 . 0055
multiplicative increase in odds of default by e
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2.2.33 Predictions Predictions

Once the coefficients have been estimated, it is a simple matter to compute the probability
of default for any given credit card balance. For example, we predict that the default
probability for an individual with balance of $1,000 is

In contrast, the predicted probability of default for an individual with a balance of $2,000
is

(x) =

x

- 10 .

6513 + 0
. 0055x1000

E 0 .

00576

(1000) =-
I

-10 ,
6513 + 0,0055x1000

It e

- 10. 6513 + 0 . 0055x 2000

e
=-

=

0 . 586
(2000) - 10.

6513 + 0 .

0055x2000

I + e

58.
6 % > 50 % => might predict default

= YES if

threshold = 0 . S
.

inR dist function
function

augment
#
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2.2.44 Multiple Logistic Regression Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By
analogy with the extension from simple to multiple linear regression,

Just as before, we can use maximum likelihood to estimate .

## 
## Call:
## stats::glm(formula = default ~ ., family = stats::binomial, data = 
data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4691  -0.1418  -0.0557  -0.0203   3.7383  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.087e+01  4.923e-01 -22.080  < 2e-16 ***
## studentYes  -6.468e-01  2.363e-01  -2.738  0.00619 ** 
## balance      5.737e-03  2.319e-04  24.738  < 2e-16 ***
## income       3.033e-06  8.203e-06   0.370  0.71152    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 2920.6  on 9999  degrees of freedom
## Residual deviance: 1571.5  on 9996  degrees of freedom
## AIC: 1579.5
## 
## Number of Fisher Scoring iterations: 8

β0, β1, … , βp

logistic_fit2 <- logistic_spec |>
  fit(default ~ ., family = "binomial", data = Default)

logistic_fit2 |>
  pluck("fit") |>
  summary()

- -

log() = Bo + B, X
,
+... + Bpxp

↓
2

Bo + B, X , +. - -
+ BpXp

-

p(X) =

f ↑ eBotB,
X, +..- + BpXp .

--

&
Yor every

other column in data frame .

yu Xp + Xe +... Xp

⑬3 se()
Ho : Bi = 0 Ha : BiFO

nameable.--& #-no significat relationship

by/ income default

Batudent (ies) o
=> If you are a student

,
LESS likeling todefaultInbeing balanced income constant.

Student conforded w/ balance (if you are a student you more likely to have higher balace

but if you have the same balance land income) as non-student
,

less likely to default.
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By substituting estimates for the regression coefficients from the model summary, we can
make predictions. For example, a student with a credit card balance of $1,500 and an
income of $40,000 has an estimated probability of default of

A non-student with the same balance and income has an estimated probability of default of

2.2.55 Logistic Regression for  Logistic Regression for  Classes Classes

We sometimes which to classify a response variable that has more than two classes. There
are multi-class extensions to logistic regression (“multinomial regression”), but there are
far more popular methods of performing this.

> 2

- -

-

-

0 . 839 + 0 . 00574 x 1500 + 0000003X70000 - 0. 6768x

j(x) =

1 + :10 . 869 + 0 . 00574 x 1500 + 0000003X70000 - 0. 6768x

= D . OS8

&

potto
augment / =

O . 105

predict/
new
data balance income student

~to eaI

-

-
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33 LDA LDA
Logistic regression involves direction modeling  using the logistic function
for the case of two response classes. We now consider a less direct approach.

Idea:Idea:

Why do we need another method when we have logistic regression?

1. 

2. 

3. 

P(Y = k|X = x)

"linear discriminant analysis"

etly

Model the distribution of the predictors separately in each response class (given Y) and tren use

Bayes from to flip these and get estimates P(Y = K/X=)
-

↳ P(A(b) = PSA)P(A)
P(13)

We might have more tran 2 response classes.

When the classes are well-separated ,
the parameter estimates for logistic regression

as suprisingly rustable.

~
&ada - 1

C -Rai

=approximately
In n is small and the distributions of the predictors X iN in each class,

LDA is more stable than logistic regression.
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3.3.11 Bayes’ Theorem for Classification Bayes’ Theorem for Classification

Suppose we wish to classify an observation into one of  classes, where .

In general, estimating  is easy if we have a random sample of ’s from the population.

Estimating  is more difficult unless we assume some particular forms.

K K ≥ 2

πk

fk(x)

P(Y = k|X = x)

πk Y

fk(x)

categorical Y can take 12 possible distinct and unordered values.

l
- orrall probability that a randomly chosen observation comes from 1 class.

⑭ "prior probability"

= P(X = x/Y = k) (discrete X)

a
= =probability that X fulls in a small region around 72 given Y=K (continuous X)

.

I
"density function" of X for an observation that comes from class 12

"Likelihood" p(yBx)P(n)A B

=(x)Tk (Bayes teorn) .

EfeG)He
P(X = x)

B

We will use the same abbreviation as before pp() on "posterior probability" that an obsw/ X =x comes from class

k
.

-

compute the fraction of training observations that come from kth class.

-

I we can estimate fx(s) we can develop a classifies that is close to the

"best" classifier (more later).
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3.3.22 p = 1 p = 1

Let’s (for now) assume we only have  predictor. We would like to obtain an estimate for 
 that we can plug into our formula to estimate . We will then classify an

observation to the class for which  is greatest.

Suppose we assume that  is normal. In the one-dimensional setting, the normal
density takes the form

Plugging this into our formula to estimate ,

We then assign an observation  to the class which makes  tthe largest. This is
equivalent to

Example 3.1 Example 3.1 Let  and . When does the Bayes classifier assign an
observation to class ?

1
fk(x) pk(x)

p̂k(x)

fk(x)

pk(x)

X = x pk(x)

K = 2 π1 = π2
1

x p
= 1

-

toassignment nest -

w/hig ↳class called estimating the Bayes classifier !

Pi
b) isclassifier" -

"Bayes known
to Gaussian

is
i

r
e .

andfimal, getter
be of do not Fil = exp)--M
we

MK and i mean and variance parameters for 16th class.

Let's also (for now) assume op = ... : G = 6? (shared variance term).

#onex(z(x -upz)
Px(x) =

--

↓
E He she*- (x-ud) classifier

I & actually # = 3
. 14159 ... -

Bayes
prior prob -
that observation falls into eth class

.

Clog + rearranging)

assign obs
.

to class for which

& (i) = <M- + logT

is maximized.

-

When G() > 5,(x)

#-
M,- M2-M-

z

2x(M ,

-M2) > u? -M2

&Me
decision boundary.
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In practice, even if we are certain of our assumption that  is drawn from a Gaussian
distribution within each class, we still have to estimate the parameters 

.

The linear discriminant analysis (LDA) method approximated the Bayes classifier by
plugging estimates in for .

Sometimes we have knowledge of class membership probabilities  that can be
used directly. If we do not, LDA estimates  using the proportion of training
observations that belong to the th class.

The LDA classifier assignes an observation  to the class with the highest value of

X

µ1, … , µK, π1, … , πK, σ2

πk, µk, σ2

π1, … , πK

πk

k

X = x

assign class 2 - > assign class 1
.

Thecision boundary.
In this case

,
we

example whereIt
,

= I
2

= 0 . d
Know

62= 1 f
,

(x) nw(Mx ,
67)

= we can create
M

,
= 1 .

25

= decision boundary is letins
- 0 -

the Bayes classifier!2

M2 = - 1
. 25

-

to estimate the Bayes classifier
.

-

E
+ Ex , -> average of training obs in kt class

=

N/ i : y; = k

&= -M- weighted arrage of class varissee

knowledge
n = # training obs. from Saititiaampling

shee

Nic = # training obs in class K /or
-

=

M

&bi = -M + log
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##    pred
## y       1     2
##   1 18966  1034
##   2  3855 16145

The LDA test error rate is approximately 12.22% while the Bayes classifier error rate is
approximately 10.52%.

The LDA classifier results from assuming that the observations within each class come
from a normal distribution with a class-specific mean vector and a common variance 
and plugging estimates for these parameters into the Bayes classifier.

σ2

histogram of randomly sampled points from classe and class from prev plot.

= M2
= 20

Ni

ja *
Bayes classifier

boundary
LDA boundary
(based on datal

- prediction based on
Mi

LDA boundary . 2

↓ -getwong. - "confusion matrix"

true
value got right

simulated many test points (20k from each class).

-# got wrong
↓

34 + 3855
= 12 .

22%- -

# test data points 40000

The Bayes error rate is the best we can possibly do !

(we can only estimate it because this is a simulated example).

The LDA approach did almost as well ! ①

--
we will relax
this later.
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3.3.33 p > 1 p > 1

We now extend the LDA classifier to the case of multiple predictors. We will assume

Formally the multivariate Gaussian density is defined as

X = (X
, , . . ., Xp) drawn from a multivariate Gaussian don w class specific mean rector is common coraience

matrix
↳ each individual component follows Gaussian and some coverience

between components.

~FirdaOt EX =

M

cor(1) = 2

transpose

-(2) =c *P( I (-1)
*
[( -m))
↑

↑ matrix inverse

"trace"
= sum of diag,

elements.

cov(Xitz)
= E

=> independences

results in
----

results in circles

ovals . T I ↑

cou(X
,Xc) = 0

↑ -

If you
marginalize

Wh
M

out X ,
or

42

don

=> Gaussian
"bell shape"

p = a Gaussian density W) M= (8) and 2 Es.
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In the case of  predictors, the LDA classifier assumes the observations in the th
class are drawn from a multivariate Gaussian distribution .

Plugging in the density function for the th class, results in a Bayes classifier

Once again, we need to estimate the unknown parameters .

To classify a new value , LDA plugs in estimates into  and chooses the class
which maximized this value.

Let’s perform LDA on the Default data set to predict if an individual will default on their
CC payment based on balance and student status.

## Call:
## lda(default ~ student + balance, data = data)
## 
## Prior probabilities of groups:
##     No    Yes 
## 0.9667 0.0333 
## 
## Group means:
##     studentYes   balance
## No   0.2914037  803.9438
## Yes  0.3813814 1747.8217
## 
## Coefficients of linear discriminants:
##                     LD1
## studentYes -0.249059498
## balance     0.002244397

p > 1 k

N(µk, Σ)

k

µ1, … , µK, π1, … , πK, Σ

X = x δk(x)

lda_spec <- discrim_linear(engine = "MASS")

lda_fit <- lda_spec |>
  fit(default ~ student + balance, data = Default)

lda_fit |>
  pluck("fit")

↳
acommon

covariance Matrix.

class-specific mean

assign an observation X =2 the class for which

discriminant funtion-> On()= IMK-IMIM + logth is maximized.

↑
linear in 2) (hence the nave IDA)

as p= 1. .

Use similar ideas to estimate.

= ) and choose K which maximizes it

Ci .e . estimating Bayes classifier (

>modeeat
specify formula for youx's

same as liner
, logistic regression.

-> =

at the fit .

good
Summa A

functio

->

stimates of ti based on class membership in training data.

C
&

& = average of each predictor / in
each class from training data

C (
I

*
liner

combinations of used to

Student
and Balance

tre
LDA decision

rule .

fant
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##           Truth
## Prediction   No  Yes
##        No  9644  252
##        Yes   23   81

Why does the LDA classifier do such a poor job of classifying the customers who default?

##           Truth
## Prediction   No  Yes
##        No  9432  138
##        Yes  235  195

# training data confusion matrix
lda_fit |>
  augment(new_data = Default) |>
  conf_mat(truth = default, estimate = .pred_class)

lda_fit |>
  augment(new_data = Default) |>
  mutate(pred_lower_cutoff = factor(ifelse(.pred_Yes > 0.2, "Yes", 

"No"))) |>
  conf_mat(truth = default, estimate = pred_lower_cutoff)

column name of prediction, augment) .
results from

gets predictions u
on new-data

confustn

-
overall training error rate

matrix = 2175 %
For Default = Yes,

g only get D
= 24% right !

252 +81

Only 3
.33% of individuals in training data set defaulted.

A simple (but useless) classifier could just predict default = No and onlyaut 3
.

33% wrong !

LDA is trying to approximate the Bayes classifier -> yield smallest possiblereallerror rate.

A 22 company may
want misclassifying default = Yes people ,

can adjust how he classify

-new threshold.

doword =No. do better at Defaultya
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3.3.44 QDA QDA

LDA assumes that the observations within each class are drawn from a multivariate
Gaussian distribution with a class-specific mean vector and a common covariance matrix
across all  classes.

Quadratic Discriminant Analysis (QDA) also assumes the observations within each class
are drawn from a multivariate Gaussian distribution with a class-specific mean vector but
now each class has its own covariance matrix.

Under this assumption, the Bayes classifier assigns observation  to class  for
whichever  maximizes

When would we prefer QDA over LDA?

K

X = x k

k
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44 KNN KNN
Another method we can use to estimate  (and thus estimate the Bayes
classifier) is through the use of -nearest neighbors.

The KNN classifier first identifies the  points in the training data that are closest to the
test data point , called .

Just as with regression tasks, the choice of  (neighborhood size) has a drastic effect on
the KNN classifier obtained.

P(Y = k|X = x)
K

K

X = x N (x)

K
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55 Comparison Comparison
LDA vs. Logistic Regression

(LDA & Logistic Regression) vs. KNN

QDA


