Chapter 4: Classification

The linear model in Ch. 3 assumes the response variable Y is quantitiative. But in many
situations, the response is categorical.

In this chapter we will look at approaches for predicting categorical responses, a process
known as classification.

Classification problems occur often, perhaps even more so than regression problems. Some
examples include

1.

As with regression, in the classification setting we have a set of training observations
(z1,Y1),-- -, (xn, yn) that we can use to build a classifier. We want our classifier to per-
form well on the training data and also on data not used to fit the model (test data).

We will use the Default data set in the ISLR package for illustrative purposes. We are
interested in predicting whether a person will default on their credit card payment on the
basis of annual income and credit card balance.



default
No

Yes

income

## default student balance income
## 1 No No 729.5265 44361.625
## 2 No Yes 817.1804 12106.135
## 3 No No 1073.5492 31767.139
## 4 No No 529.2506 35704.494
## 5 No No 785.6559 38463.496
## 6 No Yes 919.5885 7491.559
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1 Why not Linear Regression?

I have said that linear regression is not appropriate in the case of a categorical response.
Why not?

Let’s try it anyways. We could consider encoding the values of default in a quantitative
repsonse variable Y

v — 1 if default
1 0 otherwise

Using this coding, we could then fit a linear regression model to predict Y on the basis of
income and balance. This implies an ordering on the outcome, not defaulting comes first
before defaulting and insists the difference between these two outcomes is 1 unit. In prac-
tice, there is no reason for this to be true.

Using the dummy encoding, we can get a rough estimate of P(default|X), but it is not
guaranteed to be scaled correctly.



2 Logistic Regression

Let’s consider again the default variable which takes values Yes or No. Rather than
modeling the response directly, logistic regression models the probability that Y belongs to
a particular category.

For any given value of balance, a prediction can be made for default.

2.1 The Model

How should we model the relationship between p(X) = P(Y = 1/X) and X? We could use
a linear regression model to represent those probabilities
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2.1 The Model 5}

To avoid this, we must model p(X) using a function that gives outputs between 0 and 1 for
all values of X. Many functions meet this description, but in logistic regression, we use the
logistic function,
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After a bit of manipulation,



6 2 Logistic Regression

By taking the logarithm of both sides we see,

Recall from Ch. 3 that §; gives the “average change in Y associated with a one unit in-
crease in X.” In contrast, in a logistic model,

However, because the relationship between p(X) and X is not linear, 8; does not corre-
spond to the change in p(X) associated with a one unit increase in X. The amount that
p(X) changes due to a 1 unit increase in X depends on the current value of X.



2.2 Estimating the Coefficients 7
2.2 Estimating the Coefficients
The coefficients By and B are unknown and must be estimated based on the available
training data. To find estimates, we will use the method of maximum likelihood.
The basic intuition is that we seek estimates for Sy and B; such that the predicted proba-
bility p(z;) of default for each individual corresponds as closely as possible to the individ-
ual’s observed default status.

ml <- glm(default ~ balance, family = "binomial", data = Default)

summary (ml)

##

## Call:

## glm(formula = default ~ balance, family = "binomial", data = Default)

##

## Deviance Residuals:

## Min 10 Median 30 Max

## -2.2697 -0.1465 -0.0589 -0.0221 3.7589

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***

## balance 5.499e-03 2.204e-04 24.95 <2e-16 ***

## ——=

## Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 2920.6 on 9999 degrees of freedom

## Residual deviance: 1596.5 on 9998 degrees of freedom

## AIC: 1600.5

##

## Number of Fisher Scoring iterations: 8



8 2 Logistic Regression

2.3 Predictions

Once the coefficients have been estimated, it is a simple matter to compute the probability
of default for any given credit card balance. For example, we predict that the default
probability for an individual with balance of $1,000 is

In contrast, the predicted probability of default for an individual with a balance of $2,000
IS
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2.4 Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By
analogy with the extension from simple to multiple linear regression,

Just as before, we can use maximum likelihood to estimate B, 51, .. ., Bp.

m2 <- glm(default ~ ., family = "binomial", data = Default)
summary (m2)

##

## Call:

## glm(formula = default ~ ., family = "binomial", data = Default)
##

## Deviance Residuals:

## Min 10 Median 30 Max

## -2.4691 -0.1418 -0.0557 -0.0203 3.7383

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z]|)

## (Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 **=*

## studentYes -6.468e-01 2.363e-01 -2.738 0.00619 =**

## balance 5.737e-03 2.319e-04 24.738 < 2e-16 **x*

## income 3.033e-06 8.203e-06 0.370 0.71152

## ——=

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1571.5 on 9996 degrees of freedom
## AIC: 1579.5

##

## Number of Fisher Scoring iterations: 8
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By substituting estimates for the regression coefficients from the model summary, we can
make predictions. For example, a student with a credit card balance of $1,500 and an in-
come of $40,000 has an estimated probability of default of

A non-student with the same balance and income has an estimated probability of default of

2.5 Logistic Regression for > 2 Classes

We sometimes which to classify a response variable that has more than two classes. There
are multi-class extensions to logistic regression (“multinomial regression”), but there are
far more popular methods of performing this.



