
Chapter 4: Classi�cation
The linear model in Ch. 3 assumes the response variable  is quantitiative. But in many
situations, the response is categorical.

In this chapter we will look at approaches for predicting categorical responses, a process
known as classi�cation.

Classi�cation problems occur often, perhaps even more so than regression problems. Some
examples include

1. 

2. 

3. 

As with regression, in the classi�cation setting we have a set of training observations 
 that we can use to build a classi�er. We want our classi�er to per-

form well on the training data and also on data not used to �t the model (test data).

We will use the Default data set in the ISLR package for illustrative purposes. We are
interested in predicting whether a person will default on their credit card payment on the
basis of annual income and credit card balance.

Y

(x1, y1), … , (xn, yn)



##   default student   balance    income 
## 1      No      No  729.5265 44361.625 
## 2      No     Yes  817.1804 12106.135 
## 3      No      No 1073.5492 31767.139 
## 4      No      No  529.2506 35704.494 
## 5      No      No  785.6559 38463.496 
## 6      No     Yes  919.5885  7491.559
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1 Why not Linear Regression?
I have said that linear regression is not appropriate in the case of a categorical response.
Why not?

Let’s try it anyways. We could consider encoding the values of default in a quantitative
repsonse variable 

Using this coding, we could then �t a linear regression model to predict  on the basis of
income and balance. This implies an ordering on the outcome, not defaulting comes �rst
before defaulting and insists the difference between these two outcomes is  unit. In prac-
tice, there is no reason for this to be true.

Using the dummy encoding, we can get a rough estimate of , but it is not
guaranteed to be scaled correctly.

Y

Y = { 1 if default

0 otherwise

Y

1

P(default|X)
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2 Logistic Regression
Let’s consider again the default variable which takes values Yes or No. Rather than
modeling the response directly, logistic regression models the probability that  belongs to
a particular category.

For any given value of balance, a prediction can be made for default.

2.1 The Model

How should we model the relationship between  and ? We could use
a linear regression model to represent those probabilities

Y

p(X) = P(Y = 1|X) X
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To avoid this, we must model  using a function that gives outputs between  and  for
all values of . Many functions meet this description, but in logistic regression, we use the
logistic function,

After a bit of manipulation,

p(X) 0 1
X
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By taking the logarithm of both sides we see,

Recall from Ch. 3 that  gives the “average change in  associated with a one unit in-
crease in .” In contrast, in a logistic model,

However, because the relationship between  and  is not linear,  does not corre-
spond to the change in  associated with a one unit increase in . The amount that 

 changes due to a 1 unit increase in  depends on the current value of .

β1 Y

X

p(X) X β1

p(X) X

p(X) X X
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2.2 Estimating the Coef�cients

The coef�cients  and  are unknown and must be estimated based on the available
training data. To �nd estimates, we will use the method of maximum likelihood.

The basic intuition is that we seek estimates for  and  such that the predicted proba-
bility  of default for each individual corresponds as closely as possible to the individ-
ual’s observed default status.

##  
## Call: 
## glm(formula = default ~ balance, family = "binomial", data = Default) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.2697  -0.1465  -0.0589  -0.0221   3.7589   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -1.065e+01  3.612e-01  -29.49   <2e-16 *** 
## balance      5.499e-03  2.204e-04   24.95   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 2920.6  on 9999  degrees of freedom 
## Residual deviance: 1596.5  on 9998  degrees of freedom 
## AIC: 1600.5 
##  
## Number of Fisher Scoring iterations: 8

β0 β1

β0 β1

p̂(xi)

m1 <- glm(default ~ balance, family = "binomial", data = Default)

summary(m1)
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2.3 Predictions

Once the coef�cients have been estimated, it is a simple matter to compute the probability
of default for any given credit card balance. For example, we predict that the default
probability for an individual with balance of $1,000 is

In contrast, the predicted probability of default for an individual with a balance of $2,000
is
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2.4 Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By
analogy with the extension from simple to multiple linear regression,

Just as before, we can use maximum likelihood to estimate .

##  
## Call: 
## glm(formula = default ~ ., family = "binomial", data = Default) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.4691  -0.1418  -0.0557  -0.0203   3.7383   
##  
## Coefficients: 
##               Estimate Std. Error z value Pr(>|z|)     
## (Intercept) -1.087e+01  4.923e-01 -22.080  < 2e-16 *** 
## studentYes  -6.468e-01  2.363e-01  -2.738  0.00619 **  
## balance      5.737e-03  2.319e-04  24.738  < 2e-16 *** 
## income       3.033e-06  8.203e-06   0.370  0.71152     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 2920.6  on 9999  degrees of freedom 
## Residual deviance: 1571.5  on 9996  degrees of freedom 
## AIC: 1579.5 
##  
## Number of Fisher Scoring iterations: 8

β0, β1, … , βp

m2 <- glm(default ~ ., family = "binomial", data = Default)
summary(m2)
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By substituting estimates for the regression coef�cients from the model summary, we can
make predictions. For example, a student with a credit card balance of $1,500 and an in-
come of $40,000 has an estimated probability of default of

A non-student with the same balance and income has an estimated probability of default of

2.5 Logistic Regression for  Classes

We sometimes which to classify a response variable that has more than two classes. There
are multi-class extensions to logistic regression (“multinomial regression”), but there are
far more popular methods of performing this.
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