
Chapter �¯ Assessing Model Accuracy
One of the key aims of this course is to introduce you to a wide range of statistical learnÅ
ing techniquesµ Why so many¶ Why not just the Ìbest oneÍ¶

Hence° itÏs important to decide for any given set of data which method produces the best
resultsµ

https¯»»xkcdµcom»����»

There is no best one for every situation
!

exception : if you know the TRUE model that your data comes from

you won't know this .

-

How to decide ?

←
this is not

how we will decide !

O
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� Measuring Quality of Fit
With linear regression we talked about some ways to measure {t of the model

In general° we need a way to measure {t and compare across modelsµ

One way could be to measure how well its predictions match the observed dataµ In a reÅ
gression session° the most commonly used measure is the meanÅsquared error ÁMSEÂ

We donÏt really care how well our methods work on the training dataµ

Instead° we are interested in the accuracy of the predictions that we obtain when we apply
our method to previously unseen dataµ Why¶

pi , Residual standard error
.

-

not just linear regression .

- -

MSE = IT II. (Yi - Ilxi ))
' small if predictions
-

are close to the responses.I squander
prediction for its obsumtimtrue responsefor ith observation

This is based on training data (data used to fit in mode) .
" training MSE

"

kind of care about riakninys

-

↳ test data.

We already know response values in our training data !

Suppose we fit our learning model on training data { lkiiy. ), . . ., Gen , yn )) and obtain an

estimate f-
we can compute § Gci ) . If those are close to out response Yi ⇒ small training MSE.

But we care about :

f- (Xo) re yo for GG
, y .) unseen data

not used to fit the model
#

.

Want to choose the model ly lowest test MsE

Ave ((yo - Flaco ))
') over a large # of test observations Geo

, Yo).
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So how do we select a method that minimizes the test MSE¶

But what if we donÏt have a test set available¶

model df Test MSE Train MSE
Linear Regression 2 ��µ0��� �µ����
Smoothing Spline � �0µ21�0 �µ���1
Smoothing Spline 2� ��µ���2 1µ����

Sometimes he have a test data set available to us based on scientific problem.

↳ access to set of ohs . that were not used to fit
model.

Maybe we just minimize train MSE

Probtem : there is no guarantee loverly training MSE lowers test MSE

because statistical learning methods are fit to Cover fairy MS E.
⇒ training MSE can he smell but test Mst be large !



� � Measuring Quality of Fit

�µ� Classi{cation Setting

So far° we have talked about assessing model accuracy in the regression setting° but we
also need a way to assess the accuracy of classi{cation modelsµ

Suppose we see to estimate  on the basis of training observations where now the reÅ
sponse is categoricalµ The most common approach for quantifying the accuracy is the
training error rateµ

This is called the training error rate because it is based on the data that was used to train
the classi{erµ

As with the regression setting° we are mode interested in error rates for data not in our
training dataµ



�µ� BiasÅVariance TradeÅoff �

�µ� BiasÅVariance TradeÅoff

The UÅshape in the test MSE curve compared with |exibility is the result of two competÅ
ing properties of statistical learning methodsµ It is possible to show that the expected test
MSE° for a given test value ° can be decomposed

This tells us in order to minimize the expected test error° we need to select a statistical
learning method that siulatenously achieves low variance and low biasµ

Variance Ä 

Bias Ä 
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2 CrossÅValidation
As we have seen, the test error can be easily calculated when there is a test data set
availableµ

In contrast, the training error can be easily calculatedµ

In the absense of a very large designated test set that can be used to estimate the test erÅ
ror rate, what to do¶

For now we will assume we are in the regression setting Áquantitative responseÂ, but conÅ
cepts are the same for classi{cationµ



2µ1 Validation Set �

2µ1 Validation Set

Suppose we would like to estimate the test error rate for a particular statistical learning
method on a set of observationsµ What is the easiest thing we can think to do¶

LetÏs do this using the PSJ data setµ Recall we found a nonÅlinear relationship between
GLVSO and KZ\ mpgµ

We {t the model with a squared term ° but we might be wondering if we can get
better predictive performance by including higher power terms²



� � CrossÅValidanion

nerms model nesn¼mse
� linear ��µ�����
� qoadranic ��µ�����
� cobic ��µ�����
� qoarnic ��µ�����

## geW inde[ of Wraining obserYaWions
# Wake 60% of obserYaWions as Wraining and 40% for YalidaWion
Q <- nUoZ(PSJ)
WUQ <- VeT_len(Q) %LQ% VamSle(VeT_len(Q), UoXnd(0.6*Q)) 

## fiW models
P0 <- lm(KZ\ a GLVSO, GDWD = PSJ>WUQ, @)
P1 <- lm(KZ\ a GLVSO + I(GLVSOA2), GDWD = PSJ>WUQ, @)
P2 <- lm(KZ\ a GLVSO + I(GLVSOA2) + I(GLVSOA3), GDWD = PSJ>WUQ, @)
P3 <- lm(KZ\ a GLVSO + I(GLVSOA2) + I(GLVSOA3) + I(GLVSOA4), GDWD = 
PSJ>WUQ, @)

## predicW on YalidaWion seW
SUHG0 <- SUedicW(P0, PSJ>!WUQ, @)
SUHG1 <- SUedicW(P1, PSJ>!WUQ, @)
SUHG2 <- SUedicW(P2, PSJ>!WUQ, @)
SUHG3 <- SUedicW(P3, PSJ>!WUQ, @)

## esWimaWe WesW MSE
WUXHBKZ\ <-  PSJ>!WUQ, @$KZ\ # WrXWh YecWor

daWa.fUame(WHUPV = 2, PRGHO = "OLQHDU", WUXH = WUXHBKZ\, SUHG = 
SUHG0) %>%

  bind_UoZV(daWa.fUame(WHUPV = 3, PRGHO = "TXDGUDWLF", WUXH = 
WUXHBKZ\, SUHG = SUHG1)) %>%

  bind_UoZV(daWa.fUame(WHUPV = 4, PRGHO = "FXELF", WUXH = WUXHBKZ\, 
SUHG = SUHG2)) %>%

  bind_UoZV(daWa.fUame(WHUPV = 5, PRGHO = "TXDUWLF", WUXH = WUXHBKZ\, 
SUHG = SUHG3)) %>% ## bind predicWions WogeWher

  mXWaWe(VH = (WUXH - SUHG)A2) %>% # sqXared errors
  gUoXS_b\(WHUPV, PRGHO) %>% # groXp b\ model
  VXmmaUiVe(WHVWBPVH = mean(VH)) %>% ## geW WesW mse
  kable() ## preWW\ Wable



�µ� Validani`^ Sen �



�� � CrossÅValidation

�µ� LeaveÅOneÅOut Cross Validation

LeaveÅoneÅout crossÅvalidation ÁLOOCVÂ is closely related to the validation set approach°
but it attempts to address the methodÏs drawbacksµ

The LOOCV estimate for the test MSE is

LOOCV has a couple major advantages and a few disadvantagesµ



2µ2 LeaveÅOneÅOut Cross Valida± 11

terms model LOOCV¼test¼MSE
2 linear 14µ�2437
3 quadratic 11µ�1775
4 cubic 11µ78047
5 quartic 11µ�3�78

## perform LOOCV on Whe mpg daWaseW
UHV <- daWa.fUame() ## sWore resXlWs
foU(L in VeT_len(Q)) ^ # repeaW for each obserYaWion
  WUQ <- VeT_len(Q) != L # leaYe one oXW

  ## fiW models
  P0 <- lm(KZ\ a GLVSO, GDWD = PSJ>WUQ, @)
  P1 <- lm(KZ\ a GLVSO + I(GLVSOA2), GDWD = PSJ>WUQ, @)
  P2 <- lm(KZ\ a GLVSO + I(GLVSOA2) + I(GLVSOA3), GDWD = PSJ>WUQ, @)
  P3 <- lm(KZ\ a GLVSO + I(GLVSOA2) + I(GLVSOA3) + I(GLVSOA4), GDWD = 
PSJ>WUQ, @)

  
  ## predicW on YalidaWion seW
  SUHG0 <- SUedicW(P0, PSJ>!WUQ, @)
  SUHG1 <- SUedicW(P1, PSJ>!WUQ, @)
  SUHG2 <- SUedicW(P2, PSJ>!WUQ, @)
  SUHG3 <- SUedicW(P3, PSJ>!WUQ, @)
  
  ## esWimaWe WesW MSE
  WUXHBKZ\ <- PSJ>!WUQ, @$KZ\ # geW WrXWh YecWor
  
  UHV %>% ## sWore resXlWs for Xse oXWside Whe loop
    bind_UoZV(daWa.fUame(WHUPV = 2, PRGHO = "OLQHDU", WUXH = 
WUXHBKZ\, SUHG = SUHG0)) %>%

    bind_UoZV(daWa.fUame(WHUPV = 3, PRGHO = "TXDGUDWLF", WUXH = 
WUXHBKZ\, SUHG = SUHG1)) %>%

    bind_UoZV(daWa.fUame(WHUPV = 4, PRGHO = "FXELF", WUXH = WUXHBKZ\, 
SUHG = SUHG2)) %>%

    bind_UoZV(daWa.fUame(WHUPV = 5, PRGHO = "TXDUWLF", WUXH = 
WUXHBKZ\, SUHG = SUHG3)) %>% ## bind predicWions WogeWher

    mXWaWe(PVH = (WUXH - SUHG)A2) -> UHV
`

UHV %>%
  gUoXS_b\(WHUPV, PRGHO) %>%
  VXmmaUiVe(LOOCVBWHVWBMSE = mean(PVH)) %>%
  kable()



12 2 CrossÅValidation

2µ� kÅFold Cross Validation

An alternative to LOOCV is Åfold CVµ

The Åfold CV estimate is computed by averaging

Why Åfold over LOOCV¶



2µ� kÅFold Cross Validation 1�

## perform k-fold on Whe mpg daWaseW
UHV <- daWa.fUame() ## sWore resXlWs

## geW Whe folds
N <- 10
IROGV <- VamSle(VeT_len(10), Q, UHSODFH = TRUE) ## appro[imaWel\ 
eqXal si]ed

foU(L in VeT_len(N)) ^ # repeaW for each obserYaWion
  WUQ <- IROGV != L # leaYe iWh fold oXW

  ## fiW models
  P0 <- lm(KZ\ a GLVSO, GDWD = PSJ>WUQ, @)
  P1 <- lm(KZ\ a GLVSO + I(GLVSOA2), GDWD = PSJ>WUQ, @)
  P2 <- lm(KZ\ a GLVSO + I(GLVSOA2) + I(GLVSOA3), GDWD = PSJ>WUQ, @)
  P3 <- lm(KZ\ a GLVSO + I(GLVSOA2) + I(GLVSOA3) + I(GLVSOA4), GDWD = 
PSJ>WUQ, @)

  
  ## predicW on YalidaWion seW
  SUHG0 <- SUedicW(P0, PSJ>!WUQ, @)
  SUHG1 <- SUedicW(P1, PSJ>!WUQ, @)
  SUHG2 <- SUedicW(P2, PSJ>!WUQ, @)
  SUHG3 <- SUedicW(P3, PSJ>!WUQ, @)
  
  ## esWimaWe WesW MSE
  WUXHBKZ\ <- PSJ>!WUQ, @$KZ\ # geW WrXWh YecWor
  
  daWa.fUame(WHUPV = 2, PRGHO = "OLQHDU", WUXH = WUXHBKZ\, SUHG = 
SUHG0) %>%

    bind_UoZV(daWa.fUame(WHUPV = 3, PRGHO = "TXDGUDWLF", WUXH = 
WUXHBKZ\, SUHG = SUHG1)) %>%

    bind_UoZV(daWa.fUame(WHUPV = 4, PRGHO = "FXELF", WUXH = WUXHBKZ\, 
SUHG = SUHG2)) %>%

    bind_UoZV(daWa.fUame(WHUPV = 5, PRGHO = "TXDUWLF", WUXH = 
WUXHBKZ\, SUHG = SUHG3)) %>% ## bind predicWions WogeWher

    mXWaWe(PVH = (WUXH - SUHG)A2) %>%
    gUoXS_b\(WHUPV, PRGHO) %>%
    VXmmaUiVe(PVH = mean(PVH)) -> WHVWBPVHBN
  
  UHV %>% bind_UoZV(WHVWBPVHBN) -> UHV
`



14 2 CrossÅValidation

terms model kfoldCV¼test¼MSE
2 linear 14µ77098
3 quadratic 12µ14423
4 cubic 11µ94037
5 quartic 11µ78830

UHV %>%
  gUoXS_b\(WHUPV, PRGHO) %>%
  VXmmaUiVe(NIROGCVBWHVWBMSE = mean(PVH)) %>%
  kable()


