Chapter 5: Assessing Model Accuracy

One of the key aims of this course is to introduce you to a wide range of statistical learn-
ing techniques. Why so many? Why not just the “best one”?
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Hence, it’s important to decide for any given set of data, which method produces the best

results.
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1 Measuring Quality of Fit

With linear regression we talked about some ways to measure fit of the model
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In general, we need a way to measure fit and compare across models.
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One way could be to measure how well its predictions match the observed data. In a re-
gression session, the most commonly used measure is the mean-squared error (MSE)
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We don’t really care how well our methods work on the training data.
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Instead, we are interested in the accuracy of the predictions that we obtain when we apply
our method to previously unseen data. Why?
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So how do we select a method that minimizes the test MSE?
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But what if we don’t have a test set available?
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model df Test MSE Train MSE
Linear Regression 2 36.0399 4.9654
Smoothing Spline 6 40.2160 3.5441
Smoothing Spline 25 38.8952 1.8645




4 1 Measuring Quality of Fit

1.1 Classification Setting

So far, we have talked about assessing model accuracy in the regression setting, but we
also need a way to assess the accuracy of classification models.

Suppose we see to estimate f on the basis of training observations where now the re-
sponse is categorical. The most common approach for quantifying the accuracy is the
training error rate.

This is called the training error rate because it is based on the data that was used to train
the classifier.

As with the regression setting, we are mode interested in error rates for data notin our
training data.



1.2 Bias-Variance Trade-off

1.2 Bias-Variance Trade-off

The U-shape in the test MSE curve compared with flexibility is the result of two compet-
ing properties of statistical learning methods. It is possible to show that the expected test
MSE, for a given test value xg, can be decomposed

This tells us in order to minimize the expected test error, we need to select a statistical
learning method that siulatenously achieves low variance and low bias.
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2 Cross-Validation

As we have seen, the test error can be easily calculated when there is a test data set
available.

In contrast, the training error can be easily calculated.

In the absense of a very large designated test set that can be used to estimate the test er-
ror rate, what to do?

For now we will assume we are in the regression setting (quantitative response), but con-
cepts are the same for classification.



2.1 Validation Set

2.1 Validation Set

Suppose we would like to estimate the test error rate for a particular statistical learning
method on a set of observations. What is the easiest thing we can think to do?

Let’s do this using the mpg data set. Recall we found a non-linear relationship between
displ and hwy mpg.
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We fit the model with a squared term displ?, but we might be wondering if we can get
better predictive performance by including higher power terms!



2 Cross-Validation

## get index of training observations

# take 60% of observations as training and 40% for validation
n <- nrow(mpg)

trn <- seq_len(n) %in% sample(seq_len(n), round(0.6*n))

## fit models

m0 <- lm(hwy displ, data = mpg[trn, ])

ml <- lm(hwy ~ displ + I(displ”2), data = mpg[trn, ])

m2 <- Im(hwy ~ displ + I(displ”2) + I(displ”3), data = mpg[trn, 1)

m3 <- lm(hwy ~ displ + I(displ”2) + I(displ”3) + I(displ”4), data =
mpg[trn, ])
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## predict on validation set

pred0 <- predict(m0, mpg[!trn, ])
predl <- predict(ml, mpg[!trn, 1)
pred2 <- predict(m2, mpg[!trn, 1)
pred3 <- predict(m3, mpg[!trn, 1)

## estimate test MSE
true hwy <- mpg[!trn, ]Shwy # truth vector

data.frame(terms = 2, model = "linear", true = true hwy, pred =
pred0) %>%

bind_rows(data.frame(terms = 3, model = "quadratic", true =

true hwy, pred = predl)) %>%

bind_rows(data.frame(terms = 4, model = "cubic", true = true hwy,
pred = pred2)) %>%

bind_rows(data.frame(terms = 5, model = "quartic", true = true hwy,
pred = pred3)) %>% ## bind predictions together

mutate(se = (true - pred)”2) %>% # squared errors

group_by(terms, model) %>% # group by model
summarise(test mse = mean(se)) %>% ## get test mse
kable() ## pretty table

terms model test_mse
2 linear 14.17119
3 quadratic 11.26710
4 cubic 11.08535
5 quartic  11.04907




2.1 Validation Set
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10 2 Cross-Validation

2.2 Leave-One-Out Cross Validation

Leave-one-out cross-validation (LOOCYV) is closely related to the validation set approach,
but it attempts to address the method’s drawbacks.

The LOOCYV estimate for the test MSE is

LOOCYV has a couple major advantages and a few disadvantages.



2.2 Leave-One-Out Cross Valida...

## perform LOOCV on the mpg dataset

res <- data.frame() ## store results
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for(i in seq_len(n)) { # repeat for each observation

trn <- seq_len(n) != i # leave one out

## fit models

m0 <- lm(hwy ~ displ, data = mpg[trn, ])

ml <- lm(hwy ~ displ + I(displ”2), data = mpg[trn, ])

m2 <- lm(hwy ~ displ + I(displ”2) + I(displ”3), data = mpg[trn, ])
m3 <- lm(hwy ~ displ + I(displ”2) + I(displ”3) + I(displ”4), data =
mpg[trn, ])

## predict on validation set

pred0 <- predict(mO0, mpg[!trn, 1)
predl <- predict(ml, mpg[!trn, 1)
pred2 <- predict(m2, mpg[!trn, ])
pred3 <- predict(m3, mpg[!trn, 1])

## estimate test MSE
true hwy <- mpg[!trn, ]Shwy # get truth vector

res %>% ## store results for use outside the loop

bind_rows(data.frame(terms = 2, model = "linear", true =
true hwy, pred = pred0)) %>%
bind_rows(data.frame(terms = 3, model = "quadratic", true =

true hwy, pred = predl)) %>%
bind_rows(data.frame(terms = 4, model

pred = pred2)) %>%
bind_rows(data.frame(terms = 5, model = "quartic", true =

true hwy, pred = pred3)) %>% ## bind predictions together
mutate(mse = (true - pred)”2) -> res

"cubic", true = true hwy,

res %>%

group by (terms, model) %>%
summarise (LOOCV_test MSE =
kable ()

mean(mse)) %>%

terms model LOOCV _test MSE

2 linear 14.92437
3 quadratic 11.91775
4 cubic 11.78047
5 quartic 11.93978




12 2 Cross-Validation

2.3 k-Fold Cross Validation

An alternative to LOOCYV is k-fold CV.

The k-fold CV estimate is computed by averaging

Why k-fold over LOOCV?



2.3 k-Fold Cross Validation 13

## perform k-fold on the mpg dataset
res <- data.frame() ## store results

## get the folds

k <- 10

folds <- sample(seq_len(10), n, replace = TRUE) ## approximately
equal sized

for(i in seq_len(k)) { # repeat for each observation
trn <- folds != i # leave ith fold out

## fit models

m0 <- lm(hwy ~ displ, data = mpg[trn, ])

ml <- lm(hwy ~ displ + I(displ”2), data = mpg[trn, ])

m2 <- lm(hwy ~ displ + I(displ”2) + I(displ”3), data = mpg[trn, ])
m3 <- lm(hwy ~ displ + I(displ”2) + I(displ”3) + I(displ”4), data =
mpg[trn, 1)

## predict on validation set
pred0 <- predict(m0, mpg[!trn, ])

predl <- predict(ml, mpg[!trn, 1)
pred2 <- predict(m2, mpg[!trn, 1)
pred3 <- predict(m3, mpg[!trn, 1)

## estimate test MSE
true hwy <- mpg[!trn, ]$hwy # get truth vector

data.frame(terms = 2, model = "linear", true = true hwy, pred =
pred0) %>%

bind_rows(data.frame(terms = 3, model
true hwy, pred = predl)) %>%

"quadratic", true =

bind_rows(data.frame(terms = 4, model = "cubic", true = true hwy,
pred = pred2)) %>%
bind_rows (data.frame(terms = 5, model = "quartic", true =
true hwy, pred = pred3)) %>% ## bind predictions together
mutate(mse = (true - pred)”2) %>%
group by (terms, model) %>%
summarise(mse = mean(mse)) -> test mse k

res %>% bind_rows(test _mse k) -> res

}



14 2 Cross-Validation
res %>%
group_ by (terms, model) %>%
summarise(kfoldCV_test MSE = mean(mse)) %>%
kable ()
terms model  kfoldCV_test MSE
2 linear 14.77098
3 quadratic 12.14423
4 cubic 11.94037
5 quartic 11.78830
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