
Chapter �¯ Assessing Model Accuracy
One of the key aims of this course is to introduce you to a wide range of statistical learnÅ
ing techniquesµ Why so many¶ Why not just the Ìbest oneÍ¶

Hence° itÏs important to decide for any given set of data which method produces the best
resultsµ

https¯»»xkcdµcom»����»

There is no best one for every situation
!

exception : if you know the TRUE model that your data comes from

you won't know this .

-

How to decide ?

←
this is not

how we will decide !

O
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� Measuring Quality of Fit
With linear regression we talked about some ways to measure {t of the model

In general° we need a way to measure {t and compare across modelsµ

One way could be to measure how well its predictions match the observed dataµ In a reÅ
gression session° the most commonly used measure is the meanÅsquared error ÁMSEÂ

We donÏt really care how well our methods work on the training dataµ

Instead° we are interested in the accuracy of the predictions that we obtain when we apply
our method to previously unseen dataµ Why¶

pi , Residual standard error
.

-

not just linear regression .

- -

MSE = IT II. (Yi - Ilxi ))
' small if predictions
-

are close to the responses.I squander
prediction for its obsumtimtrue responsefor ith observation

This is based on training data (data used to fit in mode) .
" training MSE

"

kind of care about riakninys

-

↳ test data.

We already know response values in our training data !

Suppose we fit our learning model on training data { lkiiy. ), . . ., Gen , yn )) and obtain an

estimate f-
we can compute § Gci ) . If those are close to out response Yi ⇒ small training MSE.

But we care about :

f- (Xo) re yo for GG
, y .) unseen data

not used to fit the model
#

.

Want to choose the model ly lowest test MsE

Ave ((yo - Flaco ))
') over a large # of test observations Geo

, Yo).
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So how do we select a method that minimizes the test MSE¶

But what if we donÏt have a test set available¶

model df Test MSE Train MSE
Linear Regression 2 ��µ0��� �µ����
Smoothing Spline � �0µ21�0 �µ���1
Smoothing Spline 2� ��µ���2 1µ����

Sometimes he have a test data set available to us based on scientific problem.

↳ access to set of ohs . that were not used to fit
model.

Maybe we just minimize train MSE

Probtem : there is no guarantee loverly training MSE lowers test MSE

because statistical learning methods are fit to Cover fairy MSE.
⇒ training MSE can he smell but test Mst be large !

Y
-

- flat E

µ
datgeaneratiymechan

'm

f

smoothing spline
( ch . 7?

If =6
(slightly less
flexible) .

{mommy spline f f linnwgnss . ion
df -- 2

df = 25

(very flexible)

e.nu#.:iira7wIlahEknYfiitnwat ← predicted Tj?!
"'Iran use 's hi - zit

least flexible I ←
liver regression hase

\ fro rst training MSE.

V

most flexible, ( ① best training MSE

fits data the best
!

linear best

test MSG

How to choose the

hest model ?In general nµtIapgg wedgie.gg?mtetstmse!ten
..

A
flexibility



� � Measuring Quality of Fit

�µ� Classi{cation Setting

So far° we have talked about assessing model accuracy in the regression setting° but we
also need a way to assess the accuracy of classi{cation modelsµ

Suppose we see to estimate  on the basis of training observations where now the reÅ
sponse is categoricalµ The most common approach for quantifying the accuracy is the
training error rateµ

This is called the training error rate because it is based on the data that was used to train
the classi{erµ

As with the regression setting° we are mode interested in error rates for data not in our
training dataµ

→
quantitativeresponse.

-

Thal responses .
K

-

÷ !§I(yitigi) where Ityityi ) -- { to "II? " uorectiydassig
/ T point i)

true label predicted
fer ith rake for ith

observation observation

-

r

g
ie

.
test data loco , yo)

Test error rate is

Ave ( Ityoty . ) )
[predicted class for test observation w/ predictor Ko

-
- f-Gal .

A good classifier is one for which this quantity is small.

If we want a good estivate of tst error, we should use many last data points.



�µ� BiasÅVariance TradeÅoff �

�µ� BiasÅVariance TradeÅoff

The UÅshape in the test MSE curve compared with |exibility is the result of two competÅ
ing properties of statistical learning methodsµ It is possible to show that the expected test
MSE° for a given test value ° can be decomposed

This tells us in order to minimize the expected test error° we need to select a statistical
learning method that siulatenously achieves low variance and low biasµ

Variance Ä 

Bias Ä 

or in test error

-

← irreducible

p Effy . - IGHT] = Var ( Ikot) t [Bias (IGcoyjg + Var E
e""

average
test MSE ZO Zo

he would obtain

if we repeatedly
measure f at many
training data sets

and overall expected test MSE obtained by averaging E (thro - Elko ))) over many test points.
predict Xo . tkoiyo) .

m - -

the amount by which I would change if we estimated it using different
training data.
In general, more flexible methods have higher variance because theft data so closely
⇒ new data would result in bigger change in I

tie error that is introduced by approximating a red life problem by a mah

simpler model.

et: linear regression assumes linear form .
It is unlikely that any real - world

problems are actually linear ⇒ there will introduce bias.

in general : 9 flexibility ⇒ I bias t 9 variance
-
how much these charge determine test. Ms E

similar ideas hold for classification sexy and test error .
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2 CrossÅValidation
As we have seen, the test error can be easily calculated when there is a test data set
availableµ

In contrast, the training error can be easily calculatedµ

In the absense of a very large designated test set that can be used to estimate the test erÅ
ror rate, what to do¶

For now we will assume we are in the regression setting Áquantitative responseÂ, but conÅ
cepts are the same for classi{cationµ

Unfortunately ,

this is not usually the case
.

But training an wildly underestimate test error rate.

-

Hairston
"

split the training set and use hat of it as th
"

test at
"

as long as we are careful about not systematicthy timing our test us. training .

-

categorical
response.



2µ1 Validation Set �

2µ1 Validation Set

Suppose we would like to estimate the test error rate for a particular statistical learning
method on a set of observationsµ What is the easiest thing we can think to do¶

LetÏs do this using the mpg data setµ Recall we found a nonÅlinear relationship between
displ and hwy mpgµ

We {t the model with a squared term ° but we might be wondering if we can get
better predictive performance by including higher power terms²

test Ms 't

we could randomly divide the available data set into two parts : training and validation

#

typically 50- so

original observations.

I randomly shuffle .

tinfoil -7##÷# ← estimate test USE

www.kiyobs . training validation using these points.

-

displ
'

, displ
"



� � CrossÅValidanion

nerms model nesn¼mse
� linear ��µ�����
� qoadranic ��µ�����
� cobic ��µ�����
� qoarnic ��µ�����

## geW inde[ of Wraining obserYaWions
# Wake 60% of obserYaWions as Wraining and 40% for YalidaWion
n <- nUoZ(mpg)
trn <- VeT_len(n) %in% VamSle(VeT_len(n), UoXnd(0.6*n)) 

## fiW models
m0 <- lm(hwy ~ displ, data = mpg[trn, ])
m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

## predicW on YalidaWion seW
pred0 <- SUedicW(m0, mpg[!trn, ])
pred1 <- SUedicW(m1, mpg[!trn, ])
pred2 <- SUedicW(m2, mpg[!trn, ])
pred3 <- SUedicW(m3, mpg[!trn, ])

## esWimaWe WesW MSE
true_hwy <-  mpg[!trn, ]$hwy # WrXWh YecWor

daWa.fUame(terms = 2, model = "linear", true = true_hwy, pred = 
pred0) %>%

  bind_UoZV(daWa.fUame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

  bind_UoZV(daWa.fUame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

  bind_UoZV(daWa.fUame(terms = 5, model = "quartic", true = true_hwy, 
pred = pred3)) %>% ## bind predicWions WogeWher

  mXWaWe(se = (true - pred)^2) %>% # sqXared errors
  gUoXS_b\(terms, model) %>% # groXp b\ model
  VXmmaUiVe(test_mse = mean(se)) %>% ## geW WesW mse
  kable() ## preWW\ Wable

often you
will see 50/50.

-

Times
fat - of length Tv 60% of # of observation .

"seqlength"
÷÷÷÷. l

'

←
validation

←

\

-

dose ( ← best model

based on this

split of the data
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Repealed prawn LOX.

a
lot of

variability
here !

gomtihes

squad
model

§ O is tu

- I belt !

§

O

O

• The validation estimate of The gut error
is highly variable ! Depends on

which observations we held out .
-

- Only a subset used to fit model . Since statistical models
tend to do better

with more data
,
the validation test error can overestimate the test error.

⇒ cross - validation is a method to address these weaknesses . . .



�� � CrossÅValidation

�µ� LeaveÅOneÅOut Cross Validation

LeaveÅoneÅout crossÅvalidation ÁLOOCVÂ is closely related to the validation set approach°
but it attempts to address the methodÏs drawbacksµ

The LOOCV estimate for the test MSE is

LOOCV has a couple major advantages and a few disadvantagesµ

-

LOOCU still splits data into 2 parts , but now a single observation is and for validation .

-

,# donations

④ f.f made on h- l observations

¥÷t ② any , prediction for held outvalidate training validation point
-#T

MSE
.
.

= Cgi -ji)
' Ii't'

'aeY.tk
X training but highly

'didYs#8
.ua

variable
.

C.Van,
= 'T" MSE i = IT .

fyi - Iit

on the validation method
.

Advantage
- less bias

- since we fit using a- I observations (instead of d Iz for validation approach)
⇒ Loo CV doesn't overestimate the test error as much as validation approach .

- No randomness in this approach ⇒ will get the same results every the.

Disadvantage .
-

- sometimes stat learning models can he expensive to fit lice . order of days)

Loo Cv requires us to fit the model n tires .

⇒ could be very very slow !



2µ2 LeaveÅOneÅOut Cross Valida± 11

terms model LOOCV¼test¼MSE
2 linear 14µ�2437
3 quadratic 11µ�1775
4 cubic 11µ78047
5 quartic 11µ�3�78

## perform LOOCV on Whe mpg daWaseW
res <- daWa.fUame() ## sWore resXlWs
foU(i in VeT_len(n)) { # repeaW for each obserYaWion
  trn <- VeT_len(n) != i # leaYe one oXW

  ## fiW models
  m0 <- lm(hwy ~ displ, data = mpg[trn, ])
  m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
  m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
  m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

  
  ## predicW on YalidaWion seW
  pred0 <- SUedicW(m0, mpg[!trn, ])
  pred1 <- SUedicW(m1, mpg[!trn, ])
  pred2 <- SUedicW(m2, mpg[!trn, ])
  pred3 <- SUedicW(m3, mpg[!trn, ])
  
  ## esWimaWe WesW MSE
  true_hwy <- mpg[!trn, ]$hwy # geW WrXWh YecWor
  
  res %>% ## sWore resXlWs for Xse oXWside Whe loop
    bind_UoZV(daWa.fUame(terms = 2, model = "linear", true = 
true_hwy, pred = pred0)) %>%

    bind_UoZV(daWa.fUame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

    bind_UoZV(daWa.fUame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

    bind_UoZV(daWa.fUame(terms = 5, model = "quartic", true = 
true_hwy, pred = pred3)) %>% ## bind predicWions WogeWher

    mXWaWe(mse = (true - pred)^2) -> res
}

res %>%
  gUoXS_b\(terms, model) %>%
  VXmmaUiVe(LOOCV_test_MSE = mean(mse)) %>%
  kable()

let 's fit models of increasing complexity/flexibility on mpg to learn relationship btw hwy te
, >p ,

j--
to

length n boolean vectors I only have 1 FALSE) .

qty fnth

greet :!::÷:

→

-

even,= t.E.msEi

@Year;
'd.im?::zmw ↳nest

was estimate of test

error.



12 2 CrossÅValidation

2µ� kÅFold Cross Validation

An alternative to LOOCV is Åfold CVµ

The Åfold CV estimate is computed by averaging

Why Åfold over LOOCV¶

→ randomly divide
the observations

' ite k

2-
groups

or
' ' fields

"

I ① hold at I told
observations fit model on remaining

pty K- A folds .

② predict in held out

validation k t'T feed

get MSE ; for left

Ironing '

; ont fold
i

.

¥mmE
I

a:c:÷÷÷
.

was,
-
- Tinsel. -- E # ¥

,

Gi -nisi
.

T
fold i

Usually we un
K'- 5 or K-- lo

.

100 CV is a special can of K - fold CV w/ K -- n
.

Computational advantage ! Now have to ft k models not I models.

Another advantage due to bias - yanina trade - off (men later) .



2µ� kÅFold Cross Validation 1�

## perform k-fold on Whe mpg daWaseW
res <- daWa.fUame() ## sWore resXlWs

## geW Whe folds
k <- 10
folds <- VamSle(VeT_len(10), n, replace = TRUE) ## appro[imaWel\ 
eqXal si]ed

foU(i in VeT_len(k)) { # repeaW for each obserYaWion
  trn <- folds != i # leaYe iWh fold oXW

  ## fiW models
  m0 <- lm(hwy ~ displ, data = mpg[trn, ])
  m1 <- lm(hwy ~ displ + I(displ^2), data = mpg[trn, ])
  m2 <- lm(hwy ~ displ + I(displ^2) + I(displ^3), data = mpg[trn, ])
  m3 <- lm(hwy ~ displ + I(displ^2) + I(displ^3) + I(displ^4), data = 
mpg[trn, ])

  
  ## predicW on YalidaWion seW
  pred0 <- SUedicW(m0, mpg[!trn, ])
  pred1 <- SUedicW(m1, mpg[!trn, ])
  pred2 <- SUedicW(m2, mpg[!trn, ])
  pred3 <- SUedicW(m3, mpg[!trn, ])
  
  ## esWimaWe WesW MSE
  true_hwy <- mpg[!trn, ]$hwy # geW WrXWh YecWor
  
  daWa.fUame(terms = 2, model = "linear", true = true_hwy, pred = 
pred0) %>%

    bind_UoZV(daWa.fUame(terms = 3, model = "quadratic", true = 
true_hwy, pred = pred1)) %>%

    bind_UoZV(daWa.fUame(terms = 4, model = "cubic", true = true_hwy, 
pred = pred2)) %>%

    bind_UoZV(daWa.fUame(terms = 5, model = "quartic", true = 
true_hwy, pred = pred3)) %>% ## bind predicWions WogeWher

    mXWaWe(mse = (true - pred)^2) %>%
    gUoXS_b\(terms, model) %>%
    VXmmaUiVe(mse = mean(mse)) -> test_mse_k
  
  res %>% bind_UoZV(test_mse_k) -> res
}

←
assign

each obs.
n
samples fo a fold -

-
lo- fold I
-

labels l;
- -to vector of length Ma valves will be

1 , . . , 10
I , a - , 10

2-

vector of length n
, boolean 's FALSE for ith fold positions .

-



14 2 CrossÅValidation

terms model kfoldCV¼test¼MSE
2 linear 14µ77098
3 quadratic 12µ14423
4 cubic 11µ94037
5 quartic 11µ78830

res %>%
  gUoXS_b\(terms, model) %>%
  VXmmaUiVe(kfoldCV_test_MSE = mean(mse)) %>%
  kable()

I 0

Now again there is randomness in the assignment te folds .

d
F t
Ii

Fini:across
direct
selection of
folds.

When we perform CV
,
we are interested in estimating the test error.

More often we use it to find minimum estimated test error to help us

choose a model (or a set of parameters)
-

← called "

tuning the model
"



�µ� BiasÅVariance TradeÅoff for ± ��

�µ� BiasÅVariance TradeÅoff for ÅFold Cross Validation

ÅFold CV with  has a computational advantace to LOOCVµ

We know the validation approach can overestimate the test error because we use only half
of the data to {t the statistical learning methodµ

But we know that bias is only half the story² We also need to consider the procedureÏs
varianceµ

To summarise° there is a biasÅvariance tradeÅoff associated with the choice of  in Åfold
CVµ Typically we use  or  because these have been shown empirically to yield
test error rates closest to the truthµ

There is also a less obvious advantage I potentially more important)

• often trethat K -fold CV give us a more accurate estimate of test error rate then

Loo CV
.

By this logic , tooCV gives approximately unbiased estimates of the test error rate

(uns n - I I n points to fit).

K- fold give intermediate level of bias

(an n abs
.
left)

to OCV gins lowest bias !

too cu have higher variance than k-fold CV when Ken
.

positivelywhy ?
100 CV fits n models on almost identical points ⇒ outputs highly

*correlated w/ each other

K - fold CV averages K outputs w/ more different observations (overlap is smaller)

⇒ less positive correlation in
the outputs ,

mean of highly correlated values→ have higher variance than man of less correlated values.
⇒variance of
LooCV is

higher then
-

variance off k- fold . Cv .

in numeric

experiments
(simulation)



�� � CrossÅValidation

�µ� CrossÅValidation for Classi{cation Problems

So far we have talked only about CV for regression problemsµ

But CV can also be very useful for classi{cation problems² For example° the LOOCV error
rate for classi{cation problems takes the form

→ numeric response

use USE to quantify test error

→
cats joke
-

auf 'T Erri

where Err ; = Ifyitugi ) = { A ziti :
O ow .

K- fold and vafidatim errors similarly .

^

I
recall this can we choose an appropriate kg CKNN) using Cv?simulated

example .
" tune

"

our ANN



�µ� CrossÅValidation for Classi{± ��

Minimom CV error of �µ���� foond at µ

k_fold <- 10
cv_label <- VamSle(VeT_len(k_fold), nUoZ(train), replace = TRUE)
err <- UeS(NA, k) # sWore errors for each fle[ibiliW\ leYel

foU(k in VeT(1, 100, by = 2)) {
  err_cv <- UeS(NA, k_fold) # sWore error raWes for each fold
  foU(ell in VeT_len(k_fold)) {
    trn_vec <- cv_label != ell # fiW model on Whese
    tst_vec <- cv_label == ell # esWimaWe error on Whese
    
    ## fiW knn
    knn_fit <- knn(train[trn_vec, -1], train[tst_vec, -1], 
train[trn_vec, ]$class, k = k)

    ## error raWe
    err_cv[ell] <- mean(knn_fit != train[tst_vec, ]$class)
  }
  err[k] <- mean(err_cv)
}
err <- na.omiW(err)

K- fold
CV

[
split data

① into folds

← KNN neighborhood sizes between lad 100 (by 2).

Boolean vectors

to split data.

Hi:| rainy x validation x

train y -neighborhood size .

Errol

Tuighbeheod size .

O
this is

the minimum

wad

f
KNN

neighborhood
size .

So we might choose kit and fit my model on whole training data at. . .


